Forgot password
 Register account
View 2771|Reply 8

[函数] 最值

[Copy link]

186

Threads

206

Posts

0

Reputation

Show all posts

guanmo1 posted 2014-2-18 15:51 |Read mode
如图。
最值.jpg


____kuing edit in $\mathrm\LaTeX$____
10. 若实数 $a, b, c, d$ 满足 $(b+a^2-3\ln a)^2+(c-d+2)^2=0$,则 $(a-c)^2+(b-d)^2$ 的最小值为( )
(A) $\sqrt2$    (B) $2$    (C) $2\sqrt2$    (D) $8$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-2-18 16:52
由条件得
\begin{align*}
(a-c)^2+(b-d)^2&=(a-c)^2+(3\ln a-a^2-c-2)^2 \\
& \geqslant \frac12(c-a+3\ln a-a^2-c-2)^2 \\
& =\frac12(a^2+a+2-3\ln a)^2,
\end{align*}

\[a^2+a+2-3\ln a\geqslant a^2+a+2-3(a-1)=(a-1)^2+4\geqslant 4,\]

\[(a-c)^2+(b-d)^2\geqslant 8,\]
当 $a=d=1$, $b=c=-1$ 时取等。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-2-18 18:59
方法一kuing先生已经用了,
那么方法二只有数形结合了!

53

Threads

308

Posts

0

Reputation

Show all posts

踏歌而来 posted 2014-2-18 19:30
lna≤a-1是通过导数证明的吗?

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-2-18 19:44
回复 4# 踏歌而来
嗯,熟知的不等式,

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2014-2-18 21:52
回复 3# 其妙

整来看看

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-2-18 21:54
回复 6# isee

两个函数之间的点距,其中一条是直线,所以求另一条的切线与其平行,……

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2014-2-18 23:06
直接点到直线距离公式

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-2-18 23:20
上述方法都是数形结合的典范

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:34 GMT+8

Powered by Discuz!

Processed in 0.015085 seconds, 25 queries