|
kuing
Posted 2014-2-24 00:08
待定 $a$, $b>0$,由均值有
\begin{align*}
y^2&=(1-\cos^2\theta)(2\cos\theta +1)^2 \\
& =\frac1{ab}(a+a\cos \theta )(b-b\cos \theta )(2\cos \theta +1)(2\cos \theta +1) \\
& \leqslant \frac1{ab}\left( \frac{a+b+2+(a-b+4)\cos \theta }4 \right)^4,
\end{align*}
令
\[
\left\{\begin{aligned}
& a-b+4=0,\\
& a+a\cos \theta =b-b\cos \theta =2\cos \theta +1,
\end{aligned}\right.
\]
解得
\[a=\frac{\sqrt{33}-3}2,b=\frac{\sqrt{33}+5}2,\cos \theta =\frac{\sqrt{33}-1}8,\]
代入验证即得。 |
|