Forgot password?
 Create new account
View 3437|Reply 10

[几何] 中考二次函数题,证明角相等(或对称)

[Copy link]

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

Tesla35 Posted at 2013-9-17 12:06:27 |Read mode
QQ截图20130917115953.png
抽象出来的图形如下:
随便画一个抛物线如$y=-\frac{1}{2}x^2$,过定点$(0,-2)$的动直线交抛物线于两点$A,D$,已知定点$E(0,2)$求证$DE,AE$关于$y$轴对称。
QQ截图20130917120248.png
只要两定点关于抛物线顶点对称就有这个性质,有什么几何解释么?

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-9-17 12:59:38
角平分线定理?

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-9-17 13:15:51
首先作伸缩变换,总能将抛物线的焦点变成动直线过的定点,而那两条直线对称当且仅当伸缩变换后对称,所以我们只需要证明动直线过抛物线焦点的情形下成立即可。

QQ截图20130917131317.gif

如图,易证 $OA$、$OB$ 分别过那两个垂足,于是易得 $PF=2xy/(x+y)$,故
\[\tan\angle APF=\frac{\sqrt{x^2-(PF-x)^2}}x=\sqrt{1-\left( \frac{2y}{x+y}-1 \right)^2}=\sqrt{1-\left( \frac{x-y}{x+y} \right)^2}=\frac{2\sqrt{xy}}{x+y},\]
同理 $\tan\angle APF=2\sqrt{xy}/(x+y)$,故……

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-9-17 13:23:09
还是不怎么满意,感觉应该还有更简单更几何化的方法……不知以前有没有做过,没想起来……

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-9-17 13:51:12
这样做简单一些:
QQ截图20130917135000.gif
\[A'B'=\sqrt{AB^2-(AA'-BB')^2}=\sqrt{(x+y)^2-(x-y)^2}=2\sqrt{xy},\]

\[PA'=\frac{FA}{AB}\cdot A'B'=\frac x{x+y}\cdot2\sqrt{xy},\]
所以
\[\cot\angle A'PA=\frac{PA'}{AA'}=\frac{2\sqrt{xy}}{x+y},\]
同理……

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

 Author| Tesla35 Posted at 2013-9-17 14:21:47
找到了之前的考题,第三问是一样的,附原考题参考答案
2007武汉.png
2.png
3.png

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-9-17 14:35:53
回复 6# Tesla35

还是用了解析法……

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

 Author| Tesla35 Posted at 2013-9-17 14:49:42
是啊中考题的答案嘛,要是用了不该用的方法会被人骂的

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2013-9-17 14:52:14
和高中题没什么区别……

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

 Author| Tesla35 Posted at 2013-11-26 23:20:00
回复 9# kuing

这题2k很久以前写过……
see also:
kkkkuingggg.haotui.com/viewthread.php?tid=895

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-11-27 13:26:39
角平分线定理?
其妙 发表于 2013-9-17 12:59

手机版Mobile version|Leisure Math Forum

2025-4-21 19:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list