|
乌贼
Posted 2014-2-27 02:25
Last edited by hbghlyj 2025-4-23 12:36【解析】(I)
$\Theta a^2>1-a^2, 2 c=1, a^2=1-a^2+c^2 \Rightarrow a^2=\frac{5}{8}$ ,椭圆方程为:$\frac{8 x^2}{5}+\frac{8 x^2}{3}=1$ .
(II)设 $F_1(-c, 0), F_2(c, 0), P(x, y), Q(0, m)$ ,则 $\overline{F_2 P}=(x-c, y), \overline{Q F_2}=(c,-m)$ .
由 $1-a^2>0 \Rightarrow a \in(0,1) \Rightarrow x \in(0,1), y \in(0,1)$ .
$$
\begin{aligned}
& \Rightarrow(x-c)(x+c)=y^2 \Rightarrow x^2-y^2=c^2 \text {. 联立 }\left\{\begin{array}{l}
\frac{x^2}{a^2}+\frac{y^2}{1-a^2}=1 \\
x^2-y^2=c^2 \\
a^2=1-a^2+c^2
\end{array}\right. \text { 解得 } \\
& \Rightarrow \frac{2 x^2}{x^2-y^2+1}+\frac{2 y^2}{1-x^2+y^2}=1 \Rightarrow x^2=(y \pm 1)^2 . \Theta x \in(0,1), y \in(0,1) \therefore x=1-y
\end{aligned}
$$
所以动点 P 过定直线 $x+y-1=0$ . |
|