Forgot password
 Register account
View 2228|Reply 1

[几何] 来自人教群的椭圆短轴所对的周角在长轴顶点最大

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-2-27 00:14 |Read mode
教师-不求甚解(9463****)  22:09:55
求教:椭圆短轴所对的周角当角的顶点在长轴顶点时最小如何证明?
不妨设椭圆为 $x^2/a^2+y^2/b^2=1$ 其中 $a>b>0$,两短轴顶点分别为 $A$, $B$,点 $P$ 为椭圆上异于 $A$, $B$ 的任意点。

熟知 $k_{PA}\cdot k_{PB}=-b^2/a^2$,从而由夹角公式有
\[\tan\angle APB=\left|\frac{k_{PA}-k_{PB}}{1+k_{PA}\cdot k_{PB}}\right|=\frac{\abs{k_{PA}}+\abs{k_{PB}}}{1+k_{PA}\cdot k_{PB}}
\geqslant\frac{2\sqrt{\abs{k_{PA}\cdot k_{PB}}}}{1+k_{PA}\cdot k_{PB}}=\frac{2ab}{a^2-b^2},\]
等号成立当且仅当 $\abs{k_{PA}}=\abs{k_{PB}}$,即 $P$ 为长轴端点时。

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2014-2-27 17:32
忘了说明 $\angle APB$ 必为锐角,然后才有那个夹角公式。
不过说明也比较容易,因为压缩成圆变成直角
QQ截图20140227173549.gif

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:00 GMT+8

Powered by Discuz!

Processed in 0.014451 seconds, 25 queries