Forgot password?
 Register account
View 6293|Reply 25

[几何] 从7#开始 五改三 挑战纯几何 证明正三形 20140328

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2014-2-27 22:22 |Read mode
Last edited by isee 2014-3-28 16:47一道陈题,如果只想看看结果,自行搜索,网上应该有一种解答。

如图,$F$为凸五边形$ABCDE$内一点,
若$\angle 1=\angle 2,\angle 3=\angle 4,\angle 5=\angle 6,\angle 7=\angle 8$。
试猜想角$\alpha$与角$\beta$的大小关系。
snap.png

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2014-2-27 22:30
sinαsin∠1sin∠3sin∠5sin∠7=sinβsin∠2sin∠4sin∠6sin∠8

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-3-7 14:27
回复 2# tommywong


    厉害,不过,我看不明白,能解释一下吗?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-3-7 14:28
回复 3# isee

会看不明白??

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-3-7 14:29
回复 4# kuing


    五个乘积怎么等的?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-3-7 14:30
回复 5# isee

五个三角形顺着用正弦定理然后乘起来啊

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-3-7 14:32
Last edited by isee 2014-3-7 14:39回复 6# kuing

soga


那继续变一个:改成三角形中,

如图,$D$为$\triangle ABC$内一点,若$\angle DAB=\angle DBC =\angle DCA=30^\circ$,求证:$\triangle ABC$为等边三角形。
snap-trg.png

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-3-7 15:24
回复 7# isee
又是这题

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-3-7 15:39
回复 7# isee

这个简单啊,设另外那三个角为 $x$, $y$, $z$,则 $\sin x\sin y\sin z=1/8$, $x+y+z=90\du$, $x$, $y$, $z$ 为锐角,然后积化和差
\begin{align*}
\frac18&=\sin x\sin y\sin z \\
& =\frac12\bigl(\cos (x-y)-\cos (x+y)\bigr)\sin z \\
& =\frac12\cos (x-y)\sin z-\frac12\sin ^2z \\
& \leqslant\frac12\sin z-\frac12\sin ^2z \\
& =-\frac12\left( \frac12-\sin z \right)^2+\frac18 \\
& \leqslant\frac18,
\end{align*}
然后就只能 $x=y=z=30\du$ 了。

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-3-7 15:48
回复 9# kuing


   这还简单?这题绝对的难题。

   只是你对不等式太熟悉了!

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-3-7 15:49
回复 8# 乌贼


    我好像是第一次说这题呢。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-3-7 18:38
回复 8# 乌贼
真是狭路相逢啊,几何高手遇到几何高手了,

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-3-7 18:40
回复 9# kuing
几何难题遇到不等式专家也没辙了

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-3-7 18:44
回复 13# 其妙

那个后面的步骤你也能够想到吧,其实是蛮常规的东东……

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-3-7 23:26
回复 14# kuing
看的懂,想还是难想到啊

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-3-7 23:38
回复 11# isee
是我以前遇到过,纯几何法没证出来

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-3-10 12:02
回复  isee
是我以前遇到过,纯几何法没证出来
乌贼 发表于 2014-3-7 23:38

    这题搞不好,真没有纯几直接法。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-3-10 13:12
回复 17# isee
问点么

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-3-11 00:16
回复  isee
是我以前遇到过,纯几何法没证出来
乌贼 发表于 2014-3-7 23:38
既然用不等式取等条件能做,那么对应的几何方法是同一法么?(我没动过手哈)

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-3-28 16:45
回复 7# isee


原题
如图,$D$为$\triangle ABC$内一点,若$\angle DAB=\angle DBC =\angle DCA=30^\circ$,求证:$\triangle ABC$为等边三角形。

由条件可得等价形式是:$DA+DB+DC=2(DE+DF+DG)$ .
snap01.png

Mobile version|Discuz Math Forum

2025-5-31 10:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit