Forgot password?
 Create new account
View 3089|Reply 5

[不等式] 似乎并不难,三角函数不等式

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-2-28 17:45:40 |Read mode
浙江张---<zjzx--------com> 2014-2-28 16:14:51
QQ图片20140228174057---=2.jpg

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-2-28 20:16:01
没想到什么特别的方法,消去三角后就是平方法pq法

令 $\tan x=a$, $\tan y=b$,则
\begin{align*}
\frac{\cos x+\cos y}2\geqslant\sqrt{\frac{\cos x\cos y}{\cos (x-y)}}&\iff\frac1{\sqrt{1+a^2}}+\frac1{\sqrt{1+b^2}}\geqslant 2\sqrt{\frac1{1+ab}} \\
&\iff\frac1{1+a^2}+\frac1{1+b^2}+\frac2{\sqrt{(1+a^2)(1+b^2)}}\geqslant \frac4{1+ab} \\
&\iff\frac2{\sqrt{(1+a^2)(1+b^2)}}\geqslant\frac A{(1+a^2)(1+b^2)(1+ab)},\quad(*)
\end{align*}
其中 $A=p^2(3-q)+2(q-1)(3q-1)$, $p=a+b$, $q=ab$。

当 $A\leqslant 0$ 时式 (*) 显然成立;

当 $A>0$ 时,即 $p^2(q-3)<2(q-1)(3q-1)$ 时,式 (*) 两边平方作差整理等价于
\[\frac{(a-b)^2\cdot B}{(1+a^2)(1+b^2)(1+ab)^2}\geqslant0,\]
其中 $B=-p^2(q-3)^2+8(q-1)^3$,则由 $q\geqslant3$, $p^2(q-3)<2(q-1)(3q-1)$ 得
\[B\geqslant -2(q-1)(3q-1)(q-3)+8(q-1)^3=2(q-1)(q+1)^2\geqslant0,\]
即式 (*) 也成立,故原不等式获证。

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-2-28 20:17:39
希望没计算错

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-2-28 21:15:51
博客当:
2014年南开自主招生试题:blog.sina.com.cn/s/blog_87a034130101j1yl.html
暴力解法:问题1094:2014年南开大学实验班招生不等式题及类似blog.sina.com.cn/s/blog_5618e6650101pzhh.html

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2014-2-28 23:25:28
Last edited by realnumber at 2014-2-28 23:41:00不断有理化变形,不妨设$a\ge b$
\[\frac{1}{\sqrt{1+b^2}}-\frac{1}{\sqrt{1+ab}}\ge \frac{1}{\sqrt{1+ab}}-\frac{1}{\sqrt{1+a^2}}\]
\[\Leftrightarrow \frac{\sqrt{1+ab}-\sqrt{1+b^2}}{\sqrt{1+b^2}}\ge \frac{\sqrt{1+a^2}-\sqrt{1+ba}}{\sqrt{1+a^2}} \]
\[\Leftrightarrow  \frac{b}{\sqrt{1+b^2}}\frac{1}{\sqrt{1+b^2}+\sqrt{1+ba}}\ge \frac{a}{\sqrt{1+a^2}}\frac{1}{\sqrt{1+a^2}+\sqrt{1+ba}}\]
\[\Leftrightarrow b(\sqrt{1+ba}\sqrt{1+a^2}+1+a^2)\ge a(\sqrt{1+ba}\sqrt{1+b^2}+1+b^2)\]
\[\Leftrightarrow  b+ba^2-a-ab^2=(ab-1)(a-b)\ge \sqrt{1+ba}(a\sqrt{1+b^2}-b\sqrt{1+a^2})=\sqrt{1+ba}\frac{(a-b)(a+b)}{a\sqrt{1+b^2}+b\sqrt{1+a^2}}\]
\[\Leftrightarrow   \frac{ab-1}{\sqrt{1+ba}}\ge \frac{a+b}{a\sqrt{1+b^2}+b\sqrt{1+a^2}}\]
而$ \frac{ab-1}{\sqrt{1+ba}}=\sqrt{1+ba}-\frac{2}{\sqrt{1+ba}}\ge 1$,因为$f(x)=x-\frac{2}{x},x>0$是x的增函数.
又$1\ge \frac{a+b}{a\sqrt{1+b^2}+b\sqrt{1+a^2}}$.
---发现张老师前面发过了.居然一样.

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2014-2-28 23:33:36
广东曾--(86-----02) 17:45:34
tieba.baidu.com/p/2874690457

手机版Mobile version|Leisure Math Forum

2025-4-22 09:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list