Forgot password
 Register account
View 2034|Reply 4

[数论] 转人教论坛之余数

[Copy link]

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2014-3-1 03:55 |Read mode
$7^{99}\div2550$的余数。
bbs.pep.com.cn/forum.php?mod=viewthread&t … 110&extra=page=1
不用模,高中知识怎么作?

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2014-3-1 08:01
回复 1# 乌贼


啥高中知识,高中又不研究这类问题..........

而且人教里面那个家伙给的结果是错的

\[7^{99}=7^3(7^4)^{24}=7^3(2550-149)^{24}\]
\[7^{99}\mod 2550=7^3·149^{24}\mod 2550\]
\[=7^3(149^2)^{12}\mod 2550=7^3(9·2550-749)^{12}\mod 2550\]
\[=7^3·749^{12}\mod 2550=7^3·(749^2)^6\mod 2550\]
\[=7^3(220·2550+1)^6\mod 2550=7^3·1^6\mod 2550=343\]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2014-3-1 09:10
16=3×5+1
只关心余数的话,可以写成16=1 (mod5)
其实可以说成初中学的.

56

Threads

984

Posts

41

Reputation

Show all posts

original poster 乌贼 posted 2014-3-1 11:13
Last edited by 乌贼 2014-3-2 00:22谢谢楼上两位!
这是数论,记得我没分类。

56

Threads

984

Posts

41

Reputation

Show all posts

original poster 乌贼 posted 2014-5-27 03:34
看明白了,愚钝,真如3楼所说

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:13 GMT+8

Powered by Discuz!

Processed in 0.012864 seconds, 23 queries