Forgot password?
 Register account
View 2431|Reply 14

相传的某校自招题

[Copy link]

186

Threads

206

Posts

0

Reputation

Show all posts

guanmo1 posted 2014-3-3 11:25 |Read mode
非联盟类的高校。 zizhao.png

24

Threads

1010

Posts

37

Reputation

Show all posts

战巡 posted 2014-3-3 12:03
回复 1# guanmo1


其他的就不吐槽了,第一题尼玛就是错的.......
\[\sum_{n=1}^{2014}\frac{1}{2n-1}>\int_{1}^{2015}\frac{dx}{2x-1}=\frac{\ln(1+2·2014)}{2}\approx 4.15\]

83

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2014-3-3 12:03
1+1/3+1/5+...+1/15=2.02...

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2014-3-3 12:14
回复 3# 战巡


    看到的手写帖子,要么是写错了,分母是2的n次方减1?

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2014-3-3 15:44
第2,3,4题呢

53

Threads

308

Posts

0

Reputation

Show all posts

踏歌而来 posted 2014-3-3 18:58
回复 5# guanmo1
确实是2^n-1。

681

Threads

110K

Posts

206

Reputation

Show all posts

kuing posted 2014-3-3 19:30
第二题你没发现(1)(3)是一样的么?……结果就没答案了,因为答案就是丢了的那个

\[AG^2=\frac19\bigl(\vv{AB}+\vv{AC}\bigr)^2 =\frac19(b^2+c^2+2bc\cos A)=\frac19(2b^2+2c^2-a^2),\]

\begin{align*}
GA^2+GB^2+GC^2>\frac83R^2 &\iff a^2+b^2+c^2>8R^2 \\
&\iff\sin^2A+\sin^2B+\sin^2C>2 \\
&\iff\sin^2A-\cos^2B-\cos^2C>0 \\
&\iff-\cos(A-B)\cos(A+B)-\cos^2C>0 \\
&\iff\cos C\bigl(\cos(A-B)+\cos(A+B)\bigr)>0 \\
&\iff2\cos A\cos B\cos C>0.
\end{align*}

24

Threads

1010

Posts

37

Reputation

Show all posts

战巡 posted 2014-3-4 03:08
回复  guanmo1
确实是2^n-1。
踏歌而来 发表于 2014-3-3 18:58

这样的话可就是烂题一道了...
\[\frac{1}{2^n-1}-\frac{1}{2^{n-1}}=-\frac{2^n-2}{2^n(2^n-1)}\le 0\]
\[\sum_{n=1}^{2014} \frac{1}{2^n-1}<\sum_{n=1}^\infty \frac{1}{2^n-1}\le \sum_{n=1}^\infty \frac{1}{2^{n-1}}=2\]

24

Threads

1010

Posts

37

Reputation

Show all posts

战巡 posted 2014-3-4 03:21
回复 1# guanmo1

第三题,如图
18.jpg
$AE, BD$为角平分线,$CF∥AE, CG∥BD, BH⊥CG, AI⊥CF$
显然$∠BCH=\frac{B}{2}, ∠ACI=\frac{A}{2}$
加上两个垂直,有$CH=BC\cos(\frac{B}{2})=a\cos(\frac{B}{2}), CI=AC\cos(\frac{A}{2})=b\cos(\frac{A}{2})$
又易证$∠ICH=C+\frac{A}{2}+\frac{B}{2}, \cos(∠ICH)=\cos(C+\frac{A}{2}+\frac{B}{2})=\cos(\frac{C}{2}+90\du)=-\sin(\frac{C}{2})$
然后余弦定理得
\[HI^2=CH^2+CI^2-2\cos(∠ICH)·CH·CI=a^2\cos^2(\frac{B}{2})+b^2\cos^2(\frac{A}{2})+2ab\cos(\frac{A}{2})\cos(\frac{B}{2})\sin(\frac{C}{2})\]
又易证$BC=BG, AC=AF$,可知$H, I$为$CG, CF$中点,$HI=\frac{FG}{2}=\frac{BG+AB+AF}{2}=\frac{BC+AB+AC}{2}=1$
\[a^2\cos^2(\frac{B}{2})+b^2\cos^2(\frac{A}{2})+2ab\cos(\frac{A}{2})\cos(\frac{B}{2})\sin(\frac{C}{2})=1^2=1\]

681

Threads

110K

Posts

206

Reputation

Show all posts

kuing posted 2014-3-4 03:26
回复 9# 战巡

刚才躺床上想到了这个,起来刚画好图……刷新就看到一样的……

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2014-3-4 08:18
回复 8# 战巡


    如果是2^n-1话,确实没意思了。

186

Threads

206

Posts

0

Reputation

Show all posts

original poster guanmo1 posted 2014-3-5 14:48
第4题画图像有想法吗

24

Threads

1010

Posts

37

Reputation

Show all posts

战巡 posted 2014-3-5 15:25
回复 12# guanmo1

我是倾向于无视这种题目...没啥严谨性可言,反正手绘,差不多就行了

三次曲线,果断九点法完爆啊...
就是随便列9个满足方程的点,用平滑曲线连起就差不多了,至于这9个点的位置,不用太仔细,估算就好了

681

Threads

110K

Posts

206

Reputation

Show all posts

kuing posted 2014-3-26 01:30
\[AG^2=\frac19\bigl(\vv{AB}+\vv{AC}\bigr)^2 =\frac19(b^2+c^2+2bc\cos A)=\frac19(2b^2+2c^2-a^2),\]

\begin{align*}
GA^2+GB^2+GC^2>\frac83R^2 &\iff a^2+b^2+c^2>8R^2 \\
&\iff\sin^2A+\sin^2B+\sin^2C>2 \\
&\iff\sin^2A-\cos^2B-\cos^2C>0 \\
&\iff-\cos(A-B)\cos(A+B)-\cos^2C>0 \\
&\iff\cos C\bigl(\cos(A-B)+\cos(A+B)\bigr)>0 \\
&\iff2\cos A\cos B\cos C>0.
\end{align*}
kuing 发表于 2014-3-3 19:30
$\sin^2A+\sin^2B+\sin^2C>2$ 之后还可以像这样玩 bbs.pep.com.cn/forum.php?mod=redirect&got … 5441&pid=6564597

84

Threads

2336

Posts

4

Reputation

Show all posts

其妙 posted 2014-3-26 13:50
我都觉得在人教哪里玩过,找不到了

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 10:29 GMT+8

Powered by Discuz!

Processed in 0.018471 second(s), 24 queries

× Quick Reply To Top Edit