Forgot password?
 Register account
View 2253|Reply 3

[不等式] 一道四元不等式

[Copy link]

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

longzaifei Posted 2014-3-5 08:19 |Read mode
$x,y,z,w\in[-1,1] ,x+y+z+w=0,$   证明:\[  \sqrt{1+x+y^2}+\sqrt{1+y+z^2}+\sqrt{1+z+w^2}+\sqrt{1+w+x^2}\ge 4    \]

83

Threads

434

Posts

5419

Credits

Credits
5419

Show all posts

tommywong Posted 2014-3-5 09:01
琴生不等式

$\sqrt{1+x+y^2}+\sqrt{1+y+z^2}+\sqrt{1+z+w^2}+\sqrt{1+w+x^2} \ge 4\sqrt{1+\frac{x+y+z+w}{4}+\frac{x^2+y^2+z^2+w^2}{4}} \ge 4\sqrt{1+\frac{x+y+z+w}{4}+(\frac{x+y+z+w}{4})^2} = 4$

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

 Author| longzaifei Posted 2014-3-5 10:20
设$f(x)=\sqrt{1+x} $, 但是 $f(x) $是上凸函数,第一个不等号应该是 $\le $

83

Threads

434

Posts

5419

Credits

Credits
5419

Show all posts

tommywong Posted 2014-3-7 18:47
似乎要用到这题的方法
forum.php?mod=viewthread&tid=8&extra= … er=type&typeid=1

但也可能是把x,y,z,w换成三角函数

Mobile version|Discuz Math Forum

2025-6-7 12:05 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit