Forgot password?
 Create new account
View 1335|Reply 7

解方程组

[Copy link]

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

longzaifei Posted at 2014-3-7 15:38:10 |Read mode
在实数集内,解方程组 \[ \ \left\{\begin{matrix}\left ( x+y\right )\sqrt{2xy+5}=4xy-3y+1 &\\ \left ( x+2y\right )\sqrt{2xy+5}=6xy+x-7y-6 &\end{matrix}\right. \]

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-3-8 03:09:07
回复 1# longzaifei


其实也没什么难的,硬来就好了
换元$\sqrt{2xy+5}=b$,则有$y=\frac{b^2-5}{2x}$
方程变为:
\[\begin{cases}
(x+\frac{b^2-5}{2x})b=4x\frac{b^2-5}{2x}-3\frac{b^2-5}{2x}+1 \\
(x+2\frac{b^2-5}{2x})b=6x\frac{b^2-5}{2x}+x-7\frac{b^2-5}{2x}-6 \end{cases}\]
化简得到
\[\begin{cases}
\frac{2bx^2+(18-4b^2)x+(b+3)(b^2-5)}{x}=0...(1) \\
\frac{2(b-1)x^2+6(7-b^2)x+(2b+7)(b^2-5)}{x}=0...(2) \end{cases}\]
由此可知$x\ne 0$
当$b=0$时,易证方程组无解,$b\ne 0$
于是用$(1)·\frac{b-1}{b}-(2)$得到
\[\frac{[(6-2b)x+b^2-5](b^2+5b+3)}{b}=0\]
\[x=\frac{b^2-5}{2(b-3)}\]
反带回$(2)$里面化简得到
\[\frac{(b^2-5)(b-1)^2(b-5)}{2(b-3)^2}=0\]
由于$x=\frac{b^2-5}{2(b-3)}\ne 0$,可知$b^2-5\ne 0$,那么$b_1=1, b_2=5$
带回去求得
\[\begin{cases}
x_1=1 \\
y_1=-2 \end{cases}, \begin{cases}
x_2=5 \\
y_2=2 \end{cases}\]

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

 Author| longzaifei Posted at 2014-3-10 14:27:01
谢谢战巡!

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-3-10 20:03:37
回复 2# 战巡
牛笔!强大!

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2014-3-10 20:29:53
Last edited by isee at 2014-3-10 20:35:00三个横向的点是 \cdots,效果$\cdots$

700

Threads

110K

Posts

910K

Credits

Credits
94202
QQ

Show all posts

kuing Posted at 2014-3-10 20:33:26
回复 5# isee

那里是在case里面其实只要 & 一下就可以弄过去了

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2014-3-10 20:37:51
回复 6# kuing

一个都没加&,战巡他。

700

Threads

110K

Posts

910K

Credits

Credits
94202
QQ

Show all posts

kuing Posted at 2014-3-10 20:46:07
回复 7# isee

只有一列的不用加啊,就那个 (1)(2) 那里有必要加一下而已

手机版Mobile version|Leisure Math Forum

2025-4-22 13:01 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list