Forgot password?
 Create new account
View 2426|Reply 4

[函数] 一个函数单调性的证明

[Copy link]

93

Threads

88

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted at 2014-3-7 21:35:35 |Read mode
证明函数$f(x)=x+\dfrac{x^2}{2}-\dfrac{4}{x}+\dfrac{2(x+2)cosx}{x}$在$(0,1)$上单调递减.

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-3-7 23:18:01
比较无趣地,不断求导……
\[f'(x)=\frac{x^3+x^2+4-2x^2\sin x-4\cos x-4x\sin x}{x^2},\]

\[g(x)=2x^2\sin x+4x\sin x+4\cos x-x^3-x^2-4,\]
因 $g(0)=0$,故只需证 $g'(x)>0$,求导得
\[g'(x)=x(2x\cos x+4\sin x+4\cos x-3x-2),\]

\[h(x)=2x\cos x+4\sin x+4\cos x-3x-2,\]
只需证 $h(x)>0$,求二阶导得
\[h''(x)=-2\sin x-2x\cos x-6\sin x-4\cos x<0,\]

\[h(x)>\min \{h(0),h(1)\}=\min \{2,6\cos1+4\sin1-5\},\]

\[6\cos1+4\sin1>6\cos\frac\pi3+4\sin\frac\pi4=3+2\sqrt2>5,\]
故 $h(x)>0$,得证。

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-3-8 00:34:38
回复 3# 战巡

$\epsilon$ 不是跟 $x$ 有关的么?那样求导会不会有问题?

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-3-8 01:05:37
回复 3# kuing


算了,不折腾了,直接删了

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-3-8 01:25:48
回复 4# 战巡

手机版Mobile version|Leisure Math Forum

2025-4-22 09:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list