Forgot password
 Register account
View 2184|Reply 9

两道自招题

[Copy link]

461

Threads

957

Posts

4

Reputation

Show all posts

青青子衿 posted 2014-3-8 18:20 |Read mode
5.已知$\sin{\alpha}+\cos{\alpha}=a$$(0\le a\le\sqrt{2})$,求$\sin^n{\alpha}+\cos^n{\alpha}$关于$a$的表达式.(2005复旦自招)
7.已知$x+\frac{1}{x}=a$$(2\le a)$,求$x^n+\frac{1}{x^n}$关于$a$的表达式.

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2014-3-8 18:22
kk那二货写过。@2kuing

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-3-8 18:37
回复 2# Tesla35

你是说这个?kkkkuingggg.haotui.com/thread-85-1-9.html

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2014-3-8 18:39
回复 3# kuing


    对。二锅头

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-3-8 18:58
将那贴2楼改一下发过来

令 $a=2\cos t$,其中 $t\in\Bbb C$,那么由欧拉公式可知
\[x+\frac1x=2\cos t \iff x=e^{\pm it},\]
于是再由欧拉公式得
\[x^n+\frac1{x^n}=e^{nit}+e^{-nit}=2\cos nt=2T_n\left(\frac a2\right),\]
其中 $T_n(x)$ 为第一类切比雪夫多项式。

461

Threads

957

Posts

4

Reputation

Show all posts

original poster 青青子衿 posted 2014-3-15 09:53
回复 5# kuing
将那贴2楼改一下发过来
令 $a=2\cos t$,其中 $t\in\Bbb C$,那么由欧拉公式可知
if ...
kuing 发表于 2014-3-8 18:58
\[x^n+\frac{1}{x^n}=\sum_{k=1}^{[\frac{n}{2}]}(-1)^k(C_{n-k+1}^k-C_{n-k-1}^{k-2})a^{n-2k}\]

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2014-3-15 23:39
$\displaystyle x_1^m+x_2^m=\sum_{r=0}^{\lfloor \frac{m}{2} \rfloor}\frac{mC_{m-r}^{r}}{m-r}(x_1+x_2)^{m-2r}(-x_1 x_2)^r$

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2014-3-16 13:06
$\displaystyle x_1^m+x_2^m=\sum_{r=0}^{\lfloor \frac{m}{2} \rfloor}\frac{mC_{m-r}^{r}}{m-r}(x_1+x_2) ...
tommywong 发表于 2014-3-15 23:39
其实何苦如此??
令$x_1+x_2=p, x_1x_2=q$
强解出来就有
\[x_1=\frac{p-\sqrt{p^2-4q}}{2}, x_2=\frac{p+\sqrt{p^2-4q}}{2}\]
\[x_1^m+x_2^m=(\frac{p-\sqrt{p^2-4q}}{2})^m+(\frac{p+\sqrt{p^2-4q}}{2})^m\]

一个统一的通项总比那带有高斯函数的和号好得多

前面的题也一样,何必去搞什么这个那个多项式?直接强解$x+\frac{1}{x}=a$,再带进后面不是简单?

461

Threads

957

Posts

4

Reputation

Show all posts

original poster 青青子衿 posted 2015-8-28 17:17
回复 7# tommywong
\(\displaystyle x_1^m+x_2^m=\sum_{r=0}^{\lfloor \frac{m}{2} \rfloor}\frac{mC_{m-r}^{r}}{m-r}(x_1+x_2)^{m-2r}(-x_1 x_2)^r\) ...
tommywong 发表于 2014-3-15 23:39
华林公式(Waring Formula):
\[{A^n} + {B^n} = \sum\limits_{j = 0}^{\left[ {\frac{n}{2}} \right]} {{{\left( { - 1} \right)}^j}\frac{n}{{n - j}}\left( {\begin{array}{*{20}{c}}
{n - j}\\
j
\end{array}} \right){{\left( {AB} \right)}^j}{{\left( {A + B} \right)}^{n - 2j}}} \]
fq.math.ca/Scanned/30-3/filipponi.pdf
mathworld.wolfram.com/WaringFormula.html

fq.math.ca/Scanned/4-2/draim.pdf

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2015-8-29 16:55
境界啊,我就从没想过N次方的表达式

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:05 GMT+8

Powered by Discuz!

Processed in 0.013728 seconds, 22 queries