Forgot password?
 Register account
View 2258|Reply 5

[不等式] (z)一个不等式

[Copy link]

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

realnumber Posted 2014-3-10 21:40 |Read mode
湖南张家界黄----(119------915)  20:46:23

QQ图片20140310213149.jpg

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

 Author| realnumber Posted 2014-3-10 22:12
问题即为$0\le z \le y \le x\le1,\frac{x}{1+yz}+\frac{y}{1+xz}+\frac{z}{1+xy}\le2$
记$f(x)=\frac{x}{1+yz}+\frac{y}{1+xz}+\frac{z}{1+xy},0\le z \le y \le x\le1$
则$f'(x)=\frac{1}{1+yz}-\frac{yz}{(1+xz)^2}-\frac{yz}{(1+xy)^2}\ge 0$,只需证$\frac{1}{1+yz}\ge\frac{yz}{(1+yz)^2}-\frac{yz}{(1+zy)^2}$
化简即$1+yz\ge 2yz$显然成立.
则只需要证明x=1时,原不等式成立即可,即$0\le z \le y \le1,\frac{1}{1+yz}+\frac{y}{1+z}+\frac{z}{1+y}\le2$
重复以上办法,记得$h(y)=\frac{1}{1+yz}+\frac{y}{1+z}+\frac{z}{1+y},0\le z \le y \le1$
$h'(y)=\frac{1}{1+z}-\frac{z}{(1+y)^2}-\frac{z}{(1+yz)^2}\ge 0$只需证$\frac{1}{1+z}\ge\frac{z}{(1+z)^2}-\frac{z}{(1+z^2)^2}$
即$\frac{1}{(1+z)^2}\ge \frac{z}{(1+z^2)^2}$,化简即$1+z^4\ge z+z^3$即$(1-z)(1-z^3)\ge 0$
所以在y=1,h(y)取到最大值,即只要证明$\frac{2}{1+z}+\frac{z}{2}\le2$,去分母容易得不等式成立,且在z=0取等号.

413

Threads

1432

Posts

110K

Credits

Credits
11105

Show all posts

 Author| realnumber Posted 2014-3-10 22:16
QQ图片20140310221541.jpg

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2014-3-10 22:51
问题即为$0\le z \le y \le x\le1,\frac{x}{1+yz}+\frac{y}{1+xz}+\frac{z}{1+xy}\le2$
...
realnumber 发表于 2014-3-10 22:12
这个形式好像在哪里看到过……

682

Threads

110K

Posts

910K

Credits

Credits
90968
QQ

Show all posts

kuing Posted 2014-3-10 22:56
回复 4# kuing

噢,原来条件不一样bbs.pep.com.cn/forum.php?mod=viewthread&tid=244907

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-3-11 00:11

Mobile version|Discuz Math Forum

2025-6-6 21:01 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit