Forgot password?
 Register account
View 2430|Reply 6

[数论] 一元三次同余方程

[Copy link]

83

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2014-3-10 23:06 |Read mode
$3x^3+2x^2+2x+5≡0(mod11)$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

413

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2014-3-10 23:59
直接检验0,±1,±2,±3,±4,±5
得到5,-5,3符合,所以x=5,-5,3(mod 11)

24

Threads

1010

Posts

37

Reputation

Show all posts

战巡 posted 2014-3-11 00:04
回复 1# tommywong


这有意思么...........
没人说过$x$是整数吧?那按$x\in C$来算了
$3x^3+2x^2+2x+5=11k$,然后卡当公式强解,这是唯一的办法

84

Threads

2336

Posts

4

Reputation

Show all posts

其妙 posted 2014-3-11 00:12
回复 3# 战巡

413

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2014-3-11 00:14
en,没看到整数条件

84

Threads

2336

Posts

4

Reputation

Show all posts

其妙 posted 2014-3-11 00:14
回复 5# realnumber
不过你的做法很好,

83

Threads

434

Posts

12

Reputation

Show all posts

original poster tommywong posted 2014-3-11 08:41
成功在抽掉x-3后计算5,6
$3x^3+2x^2+2x+5≡0(mod11)$
$3(3)^3+2(3)^2+2(3)+5=110$
$3x^3+2x^2+2x-105≡0(mod11)$
$(x-3)(3x^2+11x+35)≡0(mod11)$
$3x^2+2≡0(mod11)$
$15x^2-1≡0(mod11)$
$(2x+1)(2x-1)≡0(mod11)$
$x=5,6$

|Mobile version

2025-6-7 22:51 GMT+8

Powered by Discuz!

Processed in 0.012851 second(s), 19 queries

× Quick Reply To Top Edit