Forgot password?
 Create new account
View 1757|Reply 4

[数列] (转)-数列一题

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-3-15 15:31:22 |Read mode
河北邢台余--(37----7) 14:59:40
数列$\{a_n\}$满足,$a_1=1,a_{n+1}=2^na_{n}+n$,求通项公式.
设$ b_n=\frac{a_n}{2^{\frac{n(n-1)}{2}}}$
那么问题就是$b_1=0.5,b_{n+1}=b_n+n2^{\frac{n(n+1)}{2}}$
看来没简单的表达式,后面略.

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2014-3-15 15:55:59
Last edited by realnumber at 2014-3-15 16:02:00猜测
处理诸如如下类型$a_n=g(n)a_{n-1}+h(n)$
可以尝试这样代换$\frac{a_n}{f(n)}=\frac{g(n)}{f(n)}a_{n-1}+\frac{h(n)}{f(n)}$
如果有$\frac{g(n)}{f(n)}=\frac{1}{f(n-1)}$,那么以上数列可以换元后$b_n=\frac{a_n}{f(n)}$累加就求出了通项公式.
1楼题目如此,象这个$a_1=1,a_n=2a_{n-1}+1$也是.等等.
给定$g(n)$,总可以由$\frac{f(n)}{f(1)}=\frac{f(n)}{f(n-1)}\frac{f(n-1)}{f(n-2)}...\frac{f(2)}{f(1)}=g(n)g(n-1)...g(2)$,得到f(n),而f(1)随意给定一个简单的值?
也许f(1)的值,得使得f(n)表达式简单才妥当.

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-3-15 16:08:21
若记 $g!(n)=g(1)g(2)\cdots g(n)$,则
\begin{align*}
a_n&=g(n)a_{n-1}+h(n), \\
\frac{a_n}{g!(n)}&=\frac{a_{n-1}}{g!(n-1)}+\frac{h(n)}{g!(n)}, \\
\frac{a_{n}}{g!(n)}&=\frac{a_1}{g(1)}+\frac{h(n)}{g!(n)}+\frac{h(n-1)}{g!(n-1)}+\frac{h(n-2)}{g!(n-2)}+\cdots +\frac{h(2)}{g!(2)},
\end{align*}
嗯,跟没做一样。

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2014-3-15 16:11:01
回复 3# kuing

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-3-15 20:30:25
虽然跟没做一样,但都给出了这类递推数列的通法

手机版Mobile version|Leisure Math Forum

2025-4-22 10:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list