Forgot password
 Register account
View 2824|Reply 3

[几何] (z)凸多边形的一个不等式

[Copy link]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2014-3-15 21:56 |Read mode
Last edited by realnumber 2014-3-15 22:26广东广州程汉波(287----79)  21:44:08Erdos-Mordell不等式的推广,应该历史上很早就有人弄过的
QQ图片20140310232831.jpg

0

Threads

1

Posts

0

Reputation

Show all posts

whtsg posted 2014-3-18 10:17
已知的结果,见BOTTEMA著《几何不等式》16.9

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-3-18 13:29
回复 2# whtsg

谢谢楼上,果然是已知结果,那天晚上我也觉得是被研究过的,可惜查来查去没查到,原来就在《几何不等式》里有提及。

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-11-8 07:45
An optimal inequality Zhiqin Lu
$type An optimal inequality.pdf (173.76 KB, Downloads: 63)
...
We are interested in the generalisation of the Erdös-Mordell inequality to $n$-polygons. The following inequality is true for any positive number $n$ :
Let $a_1+\ldots+a_n$ be $n$ positive numbers. Then we have
\[
a_1+\ldots+a_n \geqslant \sqrt{a_1 a_2}+\ldots+\sqrt{a_{n-1} a_n}+\sqrt{a_n a_1} \text {. }
\]
In general, we conjecture that
\[
a_1+ \ldots+ a_n \geqslant \sec \frac{\pi}{n}\left(\sqrt{a_1 a_2} \cos \alpha_1+\ldots+\sqrt{a_{n-1} a_n} \cos \alpha_{n-1}+\sqrt{a_n a_1} \cos \alpha_n\right)
\]
for $\alpha_1+\ldots+\alpha_n=\pi$.
It is not hard to see that the above inequality, if true, would give the generalisation of the Erdös-Mordell inequality to $n$-polygons.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:53 GMT+8

Powered by Discuz!

Processed in 0.015703 seconds, 26 queries