Forgot password
 Register account
View 2333|Reply 8

[函数] 请教一道函数题

[Copy link]

1

Threads

2

Posts

0

Reputation

Show all posts

dengjinjun posted 2014-3-20 00:32 |Read mode
请教一道函数题
QQ截图20140320002826.jpg
QQ截图20140320002849.jpg
QQ截图20140320002812.jpg

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-3-20 00:41
没有 q(1),可以转为求 $\displaystyle\lim_{x\to1^+}q(x)$ 也是可以的。

但是,为什么先前不去分母,改为证 $\ln x<x-1$ 呢?求导立得,就不需要 q(x) 了

1

Threads

2

Posts

0

Reputation

Show all posts

original poster dengjinjun posted 2014-3-20 00:46
谢谢,让我重新整理下思路。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-3-20 00:52
噢,原来你前面已经得到了 lnx<x-1,那就直接用就行了,对第二行的两个 lnx 都放成 x-1 马上就行了

1

Threads

2

Posts

0

Reputation

Show all posts

original poster dengjinjun posted 2014-3-20 01:10
恩,问题解决了,有时做着题很难换个角度去想,谢谢提供思路.

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2014-3-20 13:39
都是夜猫子啊


巧得紧,今天正好用了好多次$e^x\geqslant x+1,\ln x \leqslant x-1$代换,这题正好可以拿来做练习用。

收走了

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-3-20 13:40
回复 6# isee

昨晚通宵了……[哈欠]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2014-3-20 13:46
回复 7# kuing


    这么早就起了,厉害

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2014-3-26 18:31
Last edited by isee 2014-3-26 18:39今天具体看了下,按如下走,显然的

\begin{align*}
\forall x \in (1, + \infty ),\frac{x}{e^{x - 1}}\cdot x^{\frac 1{x - 1}} &< e\\
\iff x \cdot x^{\frac 1{x - 1}} &< e \cdot e^{x - 1}\\
\iff x^{\frac x{x - 1}} &< e^x\\
\iff \dfrac x{x - 1} \cdot \ln x &< x\\
\iff \ln x& <x-1
\end{align*}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-23 01:20 GMT+8

Powered by Discuz!

Processed in 0.015511 seconds, 26 queries