Forgot password?
 Create new account
View 1985|Reply 8

[数列] 多选填空

[Copy link]

181

Threads

198

Posts

2172

Credits

Credits
2172

Show all posts

guanmo1 Posted at 2014-3-24 10:14:57 |Read mode
如图 多选填空.png

181

Threads

198

Posts

2172

Credits

Credits
2172

Show all posts

 Author| guanmo1 Posted at 2014-3-24 11:57:23
(1)-a1a2…a7,命题假;
(2)考虑正负取法,故2^11,命题真;
(3)考虑中间7项,差为2的有4个,故C7取4减2=33,命题真;
(4)枚举,命题真。

不知可有更好的解法,如第(4)个命题。

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-3-24 12:45:49
回复 2# guanmo1


    应该就是你说的枚举的办法,觉得不会有更好的
12取三个数,按小到大的次序有$C_{12}^3=220$种.
(枚举,要求尽量按一定次序,保证能穷举完)
重复的如下
1.(1k,2k,3k),k=1,2,3,4四种只能是同一直线.
2.(1k,2k,4k),k=1,2,3
3.(1k,2k,5k),k=1,2
4.(1k,2k,6k),k=1,2
5.k(1,3,4),k=1,2,3
6.k(1,3,5),k=1,2
7.k(1,3,6),k=1,2
8.k(1,4,5),k=1,2
9.k(1,4,6),k=1,2
10.k(1,5,6),k=1,2
11.k(2,3,4),k=1,2,3
这么多,什么地方的考试啊,折腾人呢....,会不会遗漏?
12.k(2,3,5),k=1,2
13.k(2,3,6),k=1,2
14.k(2,4,5),k=1,2
注意:k(2,4,6),没有的,就是2k(1,2,3)上面,说明三数不能有公因数.没这么穷举的话,不容易得到这点.
15.k(2,5,6),k=1,2
16.k(3,4,5),k=1,2
17.k(3,4,6),k=1,2
18.k(3,5,6).k=1,2
19.k(4,5,6),k=1,2
完工喽~~~,合计重复原因,多19+5=24
所以220-24=196.

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-3-24 13:40:28
尼玛,将四道题合成一道题……坑……

181

Threads

198

Posts

2172

Credits

Credits
2172

Show all posts

 Author| guanmo1 Posted at 2014-3-24 14:47:54
想好了,C12取3-C6取3-C4取3=196.

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-3-24 18:46:11
回复 5# guanmo1

解释下,不明白

181

Threads

198

Posts

2172

Credits

Credits
2172

Show all posts

 Author| guanmo1 Posted at 2014-3-25 09:32:33
回复 6# realnumber


①可以乘以2的从1,2,3,4,5,6中选;
②可以乘以3的从1,2,3,4中选;
可以乘以4的已包含在可以乘以2的中了,而前两类由奇偶分析知没有重复,解释完了。

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-3-25 09:45:42
回复 7# guanmo1
恩,明白了,也是由穷举基础上归纳出来的.

66

Threads

414

Posts

3563

Credits

Credits
3563

Show all posts

Tesla35 Posted at 2014-3-25 12:44:47
回复 4# kuing


    哈哈哈

手机版Mobile version|Leisure Math Forum

2025-4-22 04:19 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list