Forgot password
 Register account
View 1727|Reply 6

已知函数f(x)=x^2

[Copy link]
青青子衿 posted 2013-9-20 14:12 |Read mode
已知函数f(x)=x^2 , A(a,f(a)),B(b,f(b))是函数图像上不同的两个点 且a﹤b,
ⅰ.求证:2f((a+b)/2)/((a+b)/2)=[f(a)-f(b)]/(a-b)
ⅱ.求证:3f((a+b)/2)≤[af(a)-bf(b)]/(a-b)

0

Threads

406

Posts

6

Reputation

Show all posts

爪机专用 posted 2013-9-20 14:28
这个不用什么技巧吧,直接把函数代入分解因式就好了啊。

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2013-9-20 15:27
练习发帖的吧,还少了$一对。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-20 15:38
回复 3# isee

那可何止少一对 $ ?

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-9-20 15:54
看起好烦啊!编辑对没有?

已知函数$f(x)=x^2$ ,$ A(a,f(a)),B(b,f(b))$是函数图像上不同的两个点 且$a﹤b$,
ⅰ.求证:$\dfrac{2f(\dfrac{a+b}2)}{\dfrac{a+b}2}=\dfrac{f(a)-f(b)}{a-b}$
ⅱ.求证:$3f(\dfrac{a+b}2)≤\dfrac{af(a)-bf(b)}{a-b} $

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-20 16:19
回复 5# 其妙

﹤ 和 ≤ 要改

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-9-20 16:46
回复 6# kuing
已知函数$f(x)=x^2$ ,$ A(a,f(a)),B(b,f(b))$是函数图像上不同的两个点 且$a<b$,

ⅰ.求证:$\dfrac{2f(\dfrac{a+b}2)}{\dfrac{a+b}2}=\dfrac{f(a)-f(b)}{a-b}$

ⅱ.求证:$3f(\dfrac{a+b}2)\leqslant\dfrac{af(a)-bf(b)}{a-b} $

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:54 GMT+8

Powered by Discuz!

Processed in 0.013488 seconds, 22 queries