Forgot password?
 Create new account
View 1778|Reply 2

[数论] 群里某人问的一个IMO题

[Copy link]

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-3-24 16:35:22 |Read mode
Last edited by 战巡 at 2014-3-25 01:07:00$m,n$都为正整数且$n>m$,若$1978^m$和$1978^n$的十进制表示法的末三位数字相同,试求满足此条件并使$m+n$达到最小的$m$与$n$

$1978^m$和$1978^n$末三位相同,说明有:
\[1978^n-1978^m \mod 1000 =0\]
\[1978^m(1978^{n-m}-1) \mod 1000=0\]
由于$n>m$,$1978^{n-m}-1$肯定是奇数,而$1978^m$肯定为偶数,又$1000=2^3·5^3$,因此有:
\[1978^m \mod 2^3=0,  1978^{n-m}-1 \mod 5^3=0\]
由此可知$m\ge 3$
另外由于$1978^{n-m}-1 \mod 125=0$,可知$1978^{n-m}$的个位为$6$,也就是$n-m \mod 4=0$,令$n-m=4k$,有:
\[1978^{4k}-1 \mod 125=(16·125-22)^{4k}-1 \mod 125=22^{4k}-1 \mod 125=(1874·125+6)^k-1 \mod 125=6^k-1 \mod 125\]
\[=(5+1)^k-1 \mod 125=\sum_{i=0}^kC^i_k·5^i-1 \mod 125=C^2_k·5^2+C^1_k·5 \mod 125=0\]
\[\frac{(5k+3)k}{2} \mod 25=0\]
这其中由于$5k+3$没理由是$5$的倍数,只能是$k \mod 25=0$,其中$k=25$为满足条件的最小值
因此$n-m=4k\ge 25·4=100$,$n\ge 100+m\ge 100+3=103$,$n+m\ge 106$

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2014-3-24 16:46:18
那人是小o
I am majia of kuing

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-3-24 23:25:30
1978年的IMO?

手机版Mobile version|Leisure Math Forum

2025-4-22 03:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list