Forgot password?
 Register account
View 2266|Reply 4

[不等式] 转一个不等式2

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2014-3-24 18:42 |Read mode
苏州褚小光(39------18) 11:02:53
QQ图片20140310232831.jpg
【LV5】马鞍山 孙世宝(45-----03) 2014-3-24 16:30:04
解:a^3+b^3>=1/2*(a+b)(a^2+b^2)
       =1/2*(a+b)c^2,
k>=1/2^(1/a+1/b)*sqrt(a^2+b^2)
   +(a^2+b^2)/ab>=sqrt2+2

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-3-24 19:35
第一个解答看上去是为了配方而配方……
第二个解答可以写得更好点:
\begin{align*}
\frac{a^3+b^3+c^3}{abc}&\geqslant \frac{\frac12(a+b)(a^2+b^2)+c^3}{abc} \\
& =\frac{\frac12(a+b)c^2+c(a^2+b^2)}{abc} \\
& =\frac12\left( \frac1a+\frac1b \right)\sqrt{a^2+b^2}+\frac{a^2+b^2}{ab} \\
& \geqslant \frac1{2\sqrt2}\left( \frac1a+\frac1b \right)(a+b)+\frac{a^2+b^2}{ab} \\
& \geqslant \sqrt2+2 \\
\end{align*}

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-3-24 21:32
还可以先必要性,猜得最大的$k$值:$k=2+\sqrt2$,然后再证明之。
取$a=b=1,c=\sqrt2$,则$k\leqslant2+\sqrt2$,
再证明$a^3+b^3+c^3\geqslant(2+\sqrt2)abc$即可。
如果感觉不好证明,那么三角换元是可行的吧。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-3-24 23:16

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-18 07:28
对不起,该文档已被删除

Mobile version|Discuz Math Forum

2025-5-31 10:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit