Forgot password
 Register account
View 2811|Reply 12

[函数] 三角函数求最值

[Copy link]

2

Threads

52

Posts

0

Reputation

Show all posts

007 posted 2013-9-20 15:55 |Read mode
Last edited by 007 2013-9-20 16:17设$\theta \in \left [0,2\pi \right]$.(1)求 $\left | \sin ^2 \theta \sin 2\theta \right |$的最大值;(2)求证:$\sin ^2 \theta \sin ^2 2\theta\cdots\sin^2 2^n \theta  \leqslant \left (\frac34 \right)^n(n \in \mathbb{N})$。
007
123

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-9-20 16:08
第(1)问倒是很简单,先找耙柿子
$∣\sin^2θ\sin2θ∣=|2\sin^3θ\cosθ|=2\sqrt{\sin^6θ\cos^2θ}=2\sqrt{\sin^2θ\cdot\sin^2θ\cdot\sin^2θ\cdot3\cos^2θ\cdot\dfrac13}\leqslant\dfrac{3\sqrt3}8$
当$\theta=\dfrac{\pi}3$可以取等号。

34

Threads

98

Posts

0

Reputation

Show all posts

hongxian posted 2013-9-20 16:19
回复 1# 007


    只会第一问
令$x=\abs{\sin\theta}$
则$\abs{\sin^2\theta\cdot\sin2\theta}=2x^3\sqrt{1-x^2}=2\sqrt{\dfrac{x^2x^2x^2(3-3x^2)}{3}}\leqslant\dfrac{3\sqrt{3}}{8}$($x=\dfrac{\sqrt3}{2}$时取$=$)

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-9-20 16:56
回复 1# 007
$\sin ^2 \theta \sin ^2 2\theta\cdots\sin^2 2^n \theta  \leqslant \left (\frac34 \right)^n(n \in \mathbb{N})$
设$u_n=\sin ^2 \theta \sin ^2 2\theta\cdots\sin^2 2^n \theta  $,可以证明$u_0\leqslant1$,$u_1\leqslant\dfrac{16}{27}$,
不知道我算错没有?

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-9-20 16:59
回复 4# 其妙
难道此不等式也许不能取等号?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-20 17:03
回复 4# 其妙

没算错,看来都取不了等号……

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-20 22:03
话说,突然想先问清楚一个事儿:
$\sin^2\theta\sin^22\theta\cdots\sin^22^n\theta$ 到底是指 $\sin^2\theta\sin^22\theta\sin^23\theta\sin^24\theta\cdots\sin^22^n\theta$ 还是 $\sin^2\theta\sin^22\theta\sin^24\theta\sin^28\theta\cdots\sin^22^n\theta$?

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-9-20 22:06
回复 7# kuing
,[吓]我当成了后者!007是张琦老师吧?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-9-20 22:12
回复 8# 其妙

我第一反应也是当成后者,不过刚才突然觉得前者也说得过去……

2

Threads

52

Posts

0

Reputation

Show all posts

original poster 007 posted 2013-9-21 07:40
回复 8# 其妙


    是我哦。
007
123

2

Threads

52

Posts

0

Reputation

Show all posts

original poster 007 posted 2013-9-21 07:42
回复 7# kuing


    是后者。此题的出现使得我想起以前做的一道类似题,应该在人教论坛或kuing的前论坛答过,所以我把此题又发上来了……
007
123

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-9-21 15:35
回复  其妙


    是我哦。
007 发表于 2013-9-21 07:40
   

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-4-29 15:41
Last edited by kuing 2025-4-19 15:45
回复  kuing


    是后者。此题的出现使得我想起以前做的一道类似题,应该在人教论坛或kuing的前论坛答过 ...
007 发表于 2013-9-21 07:42
指的是这道吗?kuingggg.github.io/5d6d/thread-954-1-4.html

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-22 10:38 GMT+8

Powered by Discuz!

Processed in 0.015081 seconds, 24 queries