Forgot password?
 Register account
View 2941|Reply 12

[几何] 目标函数最值

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2014-3-31 13:08 |Read mode
如图 $type 最值.TIF (165.71 KB, Downloads: 4007)

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2014-3-31 16:06
ffsdfd````---.GIF
楼上的图片.

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2014-3-31 16:18
对于任意给定的向量$\vv{OP}$,Q点沿$\vv{OP}$方向平移得到$\vv{OP}+\vv{OQ}$对应的点,所有的Q点构成的集合,即直线$2x+y=0$沿$\vv{OP}$方向平移得到$\vv{OP}+\vv{OQ}$对应的直线.
显然令$\vv{OP}=(0,1)$得到的直线能使$\abs{\vv{OP}+\vv{OQ}}$最小,
最小即为O到直线$2x+y=1$的距离.A

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2014-4-1 08:32
将目标函数写成|OP-OQ|=|PQ|,立知答案为A。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-1 10:01
代数方法:设$P(x,y),Q(-t,2t)$,则由柯西不等式可得,
$\abs{\vv{OP}+\vv{OQ}}=\sqrt{(x-t)^2+(y+2t)^2}=\sqrt{\dfrac{(2x-2t)^2}4+(y+2t)^2}\geqslant\sqrt{\dfrac{(2x+y)^2}{5}}\geqslant\sqrt{\dfrac{(x+y)^2}{5}}\geqslant\sqrt{\dfrac{1}{5}}$,

当且仅当$\dfrac{2x-2t}4=y+2t,x=0,x+y=1$,即$x=0,y=1,t=-\dfrac25$取等号,

此时$P(0,1),Q(-\dfrac25,\dfrac45)$.

413

Threads

1431

Posts

110K

Credits

Credits
11100

Show all posts

realnumber Posted 2014-4-1 10:56
回复 4# guanmo1

果然巧妙.只要Q在一个有中心对称的图象上,先把这个图象平移到对称中心与原点重合,接下来就可以用4楼办法.

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-1 18:52
回复 4# guanmo1
你都知道答案了。

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2014-4-1 21:28
呵呵,后来想起来的

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted 2014-4-6 13:08
学习了!

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-4-6 15:21
过$P$作直线$2x+y=0$的平行线,$\abs{\vv{OP}+\vv{OQ}}$等价于两平行线上任两点的距离,其最小值即为点$P$到直线$2x+y=0$的距离,问题转化为求$P$到直线$2x+y=0$上任一点的距离。由图知$P(0,1)$时最小。
211.png

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-6 17:34
都比较喜欢数形结合法,

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted 2014-4-6 19:26
回复 10# 乌贼


你也是我的偶像,第五个偶像。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-6 22:42
回复 12# 踏歌而来
应该是第6个吧?

Mobile version|Discuz Math Forum

2025-5-31 10:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit