Forgot password?
 Register account
View 2651|Reply 5

[不等式] 来自人教群的简单不等式$x,y>0,x+y+1=xy,\min(x+2y)=?$

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91224
QQ

Show all posts

kuing Posted 2014-4-5 14:56 |Read mode
爱好者-简单(5129*****)  14:39:38
若正实数x,y满足x+y+1=xy,则x+2y的最小值是(  )
A.3  B.5  C.7  D.8。
可以用不等式的知识求解吗?
由均值不等式得
\[x+2y+1=(x+1)y\leqslant \frac18(x+1+2y)^2,\]
即得 $x+2y\geqslant7$,当 $x=3$, $y=2$ 取等。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-5 14:58
回复 1# kuing
干净利落,快速!

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-5 15:13
由条件得,$(x-1)(y-1)=2$,不难得到$x>1,y>1$,

于是,$x+2y=(x-1)+2(y-1)+3\geqslant2\sqrt{2(x-1)(y-1)}+3=4+3=7$,取等号同1楼。

686

Threads

110K

Posts

910K

Credits

Credits
91224
QQ

Show all posts

 Author| kuing Posted 2014-4-5 15:20
回复 3# 其妙

不错,看上去你的解法自然些

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-5 15:41
回复 4# kuing
这是简单题,所以还有其它方法,例如判别式法、消元法等
不过还是觉得你解法挺自然的呢!干净利落,
因为目标是x+2y,你始终紧扣这个目标,不管是配x+2y还是放缩,都是朝着x+2y这个目标进行的,所以相当的自然!

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted 2014-4-5 17:04
两位的算法都很巧妙,佩服!

Mobile version|Discuz Math Forum

2025-6-1 18:07 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit