Forgot password?
 Register account
View 2323|Reply 2

[几何] 来自人教群的定长线段在坐标轴滑动且四端点共圆

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-4-5 16:20 |Read mode
学生-86鱼(1608******)  16:08:55
QQ图片20140405161815.jpg
不妨设四点的坐标为 $(p,0)$, $(p+a,0)$, $(0,q)$, $(0,q+b)$,设圆心坐标为 $(x,y)$,则显然有
\[x=p+\frac a2, y=q+\frac b2,\]
因为四点共圆,由圆幂定理知
\[p(p+a)=q(q+b),\]
代入整理即得
\[x^2-y^2=\frac{a^2}4-\frac{b^2}4.\]

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-5 16:40
怎么做的这么爽啊!

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-5 17:09
设四点$A,B,C,D$共圆的方程为$x^2+y^2+Dx+Ey+F=0$,令$y=0$得到,$x^2+Dx+F=0$的两根之差的绝对值$|x_1-x_2|=a$,

即$|x_1-x_2|=\sqrt{D^2-4F}=a$,于是$D^2-4F=a^2$,

同理,$E^2-4F=b^2$,两式相减得,$D^2-E^2=a^2-b^2$.

由圆心坐标公式可得,$x=-\dfrac D2,y
=-\dfrac E2$,故$x^2-y^2=\dfrac{a^2}4-\dfrac{b^2}4$.

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit