Forgot password?
 Register account
View 2201|Reply 10

[不等式] $求证:cos(\frac{α}{2})+2sin(\frac{α}{2})>2sinα$

[Copy link]

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted 2014-4-7 10:53 |Read mode
请大家看看!

$已知0°<α<180°,求证:cos(\frac{α}{2})+2sin(\frac{α}{2})>2sinα$

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-7 11:13
作差求导可以不?

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

 Author| 踏歌而来 Posted 2014-4-7 11:20
求导后,还是一堆三角函数。

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2014-4-7 11:29
回复 1# 踏歌而来


不如修正一下:
求证:
\[\cos(\frac{\alpha}{2})+2\sin(\frac{\alpha}{2})\ge \frac{(2+\sqrt[3]{2})^{\frac{3}{2}}}{2\sqrt{2}}\sin(\alpha)\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-4-7 11:34

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-7 16:58
回复 4# 战巡
尼玛精确的系数都搞出来了,

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-7 16:58
回复 5# kuing
是不是这个背景哟?

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-4-7 17:01
回复 7# 其妙

有可能,因为 5# 链接里的原问题系数碰巧也是 2……

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

 Author| 踏歌而来 Posted 2014-4-7 19:02
回复 7# 其妙

Kuing给出了那个链接,而你直接认为可能就是那个背景。
其实正是那个背景。

真想不到,你们俩这么神!

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2014-4-7 21:56
设$x=cos(\frac{α}{2}),y=sin(\frac{α}{2}),x^2+y^2=1$
问题就是$x+y>4xy$,即为$\frac{1}{y}+\frac{2}{x}>4$
而$1=x^2+y^2\ge \frac{(x+y)^2}{2}$,后面略,精确值这样得不到,大于2应该可以.

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

 Author| 踏歌而来 Posted 2014-4-8 18:16
谢谢战巡和realnumber的解答!

Mobile version|Discuz Math Forum

2025-5-31 10:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit