Forgot password?
 Register account
View 1992|Reply 6

[不等式] 普高解法是什么呢?一个权方和不等式

[Copy link]

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

realnumber Posted 2014-4-7 21:14 |Read mode
Last edited by realnumber 2014-4-8 09:45倪--(30----21) 17:50:42
对任意$s,t\in R+$,求实数a的最大值,使得下列不等式恒成立
\[\frac{(s+1)^2}{t}+\frac{(t+1)^2}{s}\ge{a^2}\]
权方和不等式就一行了.
写成cauchy不等式样子就是,记$s+t=z$
\begin{align*}
\frac{(s+1)^2}{t}+\frac{(t+1)^2}{s}&=\frac{1}{s+t}(s+t)(\frac{(s+1)^2}{t}+\frac{(t+1)^2}{s})\ge\frac{(s+t+2)^2}{s+t} \\
&=z+\frac{4}{z}+4\\
\end{align*}

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2014-4-7 21:29
徐-(58----87)  21:01:52
然后连续的基本不等式
展开后就是基本不等式不停地配,过程不写了.

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-7 23:34
普高解法1:
$\dfrac{(s+1)^2}t+\dfrac{(t+1)^2}s \geqslant \dfrac{4s}t+\dfrac{4t}s\geqslant 8$,故$a^2\leqslant8$,后面略.

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-7 23:39
普高解法2:
$[\dfrac{(s+1)^2}t+4t]+[\dfrac{(t+1)^2}s+4s] \geqslant4 (s+1)+4(t+1)=4s+4t+8$,

故$\dfrac{(s+1)^2}t+\dfrac{(t+1)^2}s \geqslant 8
$,所以$a^2\leqslant8$,后面略.

413

Threads

1431

Posts

110K

Credits

Credits
11099

Show all posts

 Author| realnumber Posted 2014-4-8 10:35
(z)同事_王
QQ图片20140408103402-----啊.jpg
排序,二次函数

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-8 11:04
普高解法3:
因为$4\cdot1\cdot s\leqslant{(s+1)^2}$,同理,$4\cdot1\cdot t\leqslant{(t+1)^2}$,

故$\dfrac{(s+1)^2}t+\dfrac{(t+1)^2}s=\dfrac{4(s+1)^2}{4\cdot1\cdot t}+\dfrac{4(t+1)^2}{4\cdot1\cdot s} \geqslant \dfrac{4(s+1)^2}{(t+1)^2}+\dfrac{4(t+1)^2}{(s+1)^2}\geqslant 8$,所以,$a^2\leqslant8$,后面略.

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-8 12:21
非普高解法1:
$\dfrac{(s+1)^2}{t}+\dfrac{(t+1)^2}{s}\geqslant\dfrac{(s+t+2)^2}{s+t}
=\dfrac{8(s+t+2)^2}{4(s+t)\cdot2}\geqslant\dfrac{8(s+t+2)^2}{(s+t+2)^2}=8$,

这里用了权方和不等式,以及不等式$4xy\leqslant(x+y)^2$.

非普高解法2:
或者,$\dfrac{(s+1)^2}{t}+\dfrac{(t+1)^2}{s}\geqslant\dfrac{(s+t+2)^2}{s+t}\geqslant\dfrac{(2\sqrt{(s+t)\cdot2})^2}{s+t}
=\dfrac{8(s+t)}{s+t}=8$,以下略。

Mobile version|Discuz Math Forum

2025-5-31 10:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit