Forgot password
 Register account
View 1848|Reply 3

[数列] 数列单调性问题

[Copy link]

45

Threads

51

Posts

0

Reputation

Show all posts

等待hxh posted 2014-4-8 13:58 |Read mode
2.jpg (此题我是分奇偶讨论做的,解答比较繁琐,望高人给予简洁证明!)

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-4-8 15:25
好像是老题,懒得找链接了,写一下也蛮简单
\begin{align*}
a_n&=\sum_{k=1}^n\frac1{k(n+1-k)} \\
& =\sum_{k=1}^n\frac1{n+1}\left( \frac1k+\frac1{n+1-k} \right) \\
&=\frac1{n+1}\left( \sum_{k=1}^n\frac1k+\sum_{k=1}^n\frac1{n+1-k} \right) \\
&=\frac2{n+1}\sum_{k=1}^n\frac1k,
\end{align*}

\begin{align*}
a_n-a_{n+1}&=\frac2{n+1}\sum_{k=1}^n\frac1k-\frac2{n+2}\sum_{k=1}^{n+1}\frac1k \\
&=\frac2{n+1}\sum_{k=1}^n\frac1k-\frac2{n+2}\sum_{k=1}^n\frac1k-\frac2{(n+1)(n+2)} \\
&=\frac2{(n+1)(n+2)}\sum_{k=1}^n\frac1k-\frac2{(n+1)(n+2)} \\
&=\frac2{(n+1)(n+2)}\sum_{k=2}^n\frac1k\\
&>0.
\end{align*}

45

Threads

51

Posts

0

Reputation

Show all posts

original poster 等待hxh posted 2014-4-8 16:28
谢谢kuing

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2014-4-8 19:12
谢谢kuing

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:53 GMT+8

Powered by Discuz!

Processed in 0.012714 seconds, 25 queries