Forgot password?
 Register account
View 2292|Reply 7

[数列] 数列放缩题

[Copy link]

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

等待hxh Posted 2014-4-8 13:59 |Read mode
3.jpg (此题我已证明,但证明过程比较复杂,希望能学习简洁的证明)

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-4-8 15:09
$f(x)=x^3+x/n-1$,则 $f(x)$ 递增,$f(0)<0<f(1)$,故 $0<a_n<1$,从而
\[\frac1{(k+1)^2a_k}=\frac{a_k^2+\frac1k}{(k+1)^2}<\frac{1+\frac1k}{(k+1)^2}=\frac1{k(k+1)}=\frac1k-\frac1{k+1},\]
下略

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

 Author| 等待hxh Posted 2014-4-8 16:29
谢谢kuing,kuing能否看下我发的另外两个数列题,那两题我还没搞定!

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-4-8 16:32
回复 3# 等待hxh

看肯定会看,搞定了自然也会发答案……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2014-4-9 09:11
变态的一组题,一个不会

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-9 16:37
回复 1# 等待hxh
请传上你的证明

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-4-12 00:56
原来旧论坛也出现过这道题 kkkkuingggg.haotui.com/thread-641-1-7.html

7

Threads

127

Posts

874

Credits

Credits
874

Show all posts

第一章 Posted 2014-4-12 16:00
印象中广州2013年二模考过一个类似的:
已知$a_n$是函数$f(x)=x^3+na_n-1$的零点,$n\in N^*$
(1)求证:$0<a_n<1$;
(2)求证:$\frac{n}{n+1}<a_1+a_2+\cdots+a_n<\frac{3}{2}$.

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit