Forgot password
 Register account
View 2049|Reply 9

[函数] 一道函数题,该怎么想?

[Copy link]

92

Threads

89

Posts

0

Reputation

Show all posts

aishuxue posted 2014-4-8 22:21 |Read mode
$\forall x\in \mathbf{N},f(x)+f(x+2)\leqslant 2f(x+1)$,且$f(x)\in \mathbf{N}$,证明:$\forall x\in \mathbf{N},f(x+1)\geqslant f(x)$.

45

Threads

51

Posts

0

Reputation

Show all posts

等待hxh posted 2014-4-8 22:43
5.jpg

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-4-8 22:45
假如某个 $a\in\Bbb N$ 使 $f(a+1)<f(a)$,则 $f(a+1)-f(a)\leqslant-1$,故 $f(a+2)-f(a+1)\leqslant f(a+1)-f(a)\leqslant-1$,……,如此下去,都所有 $n\in\Bbb N^+$ 都有 $f(a+n)-f(a+n-1)\leqslant-1$,求和得 $f(a+n)\leqslant f(a)-n$,当 $n$ 充分大时,右边必为负,矛盾。

92

Threads

89

Posts

0

Reputation

Show all posts

original poster aishuxue posted 2014-4-8 23:50
由$f(a+1)<f(a)$,得$f(a+2)-f(a+1)\leqslant f(a+1)-f(a)<0$,得$f(a+2)<f(a+1)$,故有$f(a)>f(a+1)>f(a+2)>\cdot,$无限下去,容易推出矛盾,这样说有问题吗?请问Kuing!

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-4-8 23:57
回复 4# aishuxue

有,只说明递减是不够的。

92

Threads

89

Posts

0

Reputation

Show all posts

original poster aishuxue posted 2014-4-9 00:04
从某个正整数开始递减,难道不能说明问题吗??

92

Threads

89

Posts

0

Reputation

Show all posts

original poster aishuxue posted 2014-4-9 00:08
回复 5# kuing
问题出在什么地方?

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-4-9 00:13
回复 6# aishuxue
说的不明显,这属于自己懂了,但没把理由写充分,他人未见得理解了你的意思,
所以关键之处还要详细点,理由充分点。
比如你的理由写在了6楼(这理由还是可以理解,但你没有将之变为数学化、代数化的语言),所以单看4楼理由就是不充分的。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-4-9 00:13
回复 6# aishuxue

噢,那些都是整数,那就没问题了。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-4-9 01:12
回复 8# 其妙

我当时是以为他脱离了原题而想讨论一般情况,所以我就没当那些是整数了……

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:37 GMT+8

Powered by Discuz!

Processed in 0.014626 seconds, 25 queries