Forgot password?
 Create new account
View 2160|Reply 9

[不等式] 数列最小值问题

[Copy link]

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

等待hxh Posted at 2014-4-8 22:55:18 |Read mode
7.jpg (这一类型的最值问题,有什么套路可循吗?希望高人指点迷津!!)

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-8 23:03:51
回复 1# 等待hxh
kk是全能的,不过不等式却更是他的强项!

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-9 00:04:02
答案:$\dfrac32$,对不对?

700

Threads

110K

Posts

910K

Credits

Credits
94212
QQ

Show all posts

kuing Posted at 2014-4-9 00:27:31
回复 3# 其妙

嗯,对的,才想起这个结论:artofproblemsolving.com/Forum/viewtopic.php?p … 020326&#p2020326(5#)

\begin{align*}
&\frac{a_1}{a_2^2+1}+\frac{a_2}{a_3^2+1}+\cdots+\frac{a_n}{a_1^2+1} \\
={}&a_1-\frac{a_1a_2^2}{a_2^2+1}+a_2-\frac{a_2a_3^2}{a_3^2+1}+\cdots+a_n-\frac{a_na_1^2}{a_1^2+1} \\
\geqslant{}& 2-\frac{a_1a_2}2-\frac{a_2a_3}2-\cdots-\frac{a_na_1}2,
\end{align*}
利用贴中的结论有 $a_1a_2+a_2a_3+\cdots+a_na_1\leqslant1$,故原式 $\geqslant3/2$。

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2014-4-9 02:46:45
这题跟数列根本没关系, 标题没取好。
I am majia of kuing

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

 Author| 等待hxh Posted at 2014-4-9 10:08:58
回复 4# kuing

等号能成立吗? 如果等号成立的话,那就有a1=a2=a3=....an=1,此时与a1+a2+。。。+an=2矛盾

700

Threads

110K

Posts

910K

Credits

Credits
94212
QQ

Show all posts

kuing Posted at 2014-4-9 12:42:12
当 $a_1=a_2=1$, $a_3=a_4=\cdots=a_n=0$ 时取等。

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

 Author| 等待hxh Posted at 2014-4-9 13:25:27
哦,对,我以为您用的是均值不等式,所以需要都等于1,看错了,谢谢kuing的精彩解答!

700

Threads

110K

Posts

910K

Credits

Credits
94212
QQ

Show all posts

kuing Posted at 2014-4-9 13:55:37
第一步之后是在分母里面用了均值,只看分母中是取不了等的,但由于分子可以为 0,所以还是能取到。

700

Threads

110K

Posts

910K

Credits

Credits
94212
QQ

Show all posts

kuing Posted at 2014-4-18 17:10:10
原来我在旧论坛也做过一次
kkkkuingggg.haotui.com/thread-1064-1-5.html
记忆力又差了……

手机版Mobile version|Leisure Math Forum

2025-4-22 15:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list