Forgot password?
 Register account
View 2042|Reply 4

[几何] 把几何题改成这样也够狠的

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2014-4-9 00:21 |Read mode
2014年4月海淀一模理科数学第14题(很高兴,我第一次,终于有机会,秒了海淀高三一模压轴填空题)


已知向量序列:$\vv {a_1},\vv {a_2},\vv {a_3},\cdots,\vv {a_n},\cdots$,满足如下条件:


$\abs{\vv {a_1}}=4\abs{\vv d}=2,2 \vv {a_1}\cdot \vv d=-1$, 且$\vv {a_n}-\vv {a_{n-1}}=\vv d(n,=2,3,4,\cdots)$.


若$\vv a_1 \cdot  \vv a_k=0$,则$k=$____;

$\abs{\vv {a_1}},\abs{\vv {a_2}},\abs{\vv {a_3}},\cdots,\abs{\vv {a_n}},\cdots$中第_____项最小.










反白答案
9,3

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-4-9 01:27
$k=9$,第$3$项。
211.png

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-4-9 08:57
回复 2# 乌贼


    94

不过,也可如数列一般迭代

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2014-4-9 12:49
回复 3# isee
不知道什么是迭代

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2014-4-10 13:53
我来代数解法:
易得$\vv{a_n}=\vv{a_1}+(n-1)\vv{d}$(累加法),故$\vv{a_1}\cdot\vv{a_k}=\vv{a_1}^2+(k-1)\vv{a_1}\cdot\vv{d}=4-\dfrac{k-1}{2}=0$,得到$k=9$。

又因为$|\vv{a_n}|^2=|\vv{a_1}|^2+2(n-1)\vv{a_1}\cdot\vv{d}+(n-1)^2|\vv{d}|^2=4-(n-1)+\dfrac14(n-1)^2$(此为关于$t=\dfrac{n-1}2$的二次函数),

故当$t=\dfrac{n-1}2=1$,即$n=3$时,$|\vv{a_n}|^2$取得最小值。
妙不可言,不明其妙,不着一字,各释其妙!

Mobile version|Discuz Math Forum

2025-5-31 10:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit