Forgot password
 Register account
View 2316|Reply 6

[不等式] 求最小值

[Copy link]
依然饭特稀 posted 2014-4-10 14:01 |Read mode

求最小值

求最小值


______kuing edit in $\mathrm\LaTeX$______
$abcd=1$,求 $(a^2+b^2+c^2+d^2+ab+ac+ad+bc+bd+cd)_{\min}$。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-4-10 14:14
\begin{align*}
& a^2+b^2+c^2+d^2+ab+ac+ad+bc+bd+cd \\
={}&\frac{a^2+b^2+c^2+d^2+(a+b+c+d)^2}2 \\
\geqslant{}&\frac{a^2+b^2+c^2+d^2}2 \\
\geqslant{}&2\sqrt[4]{a^2b^2c^2d^2} \\
={}&2,
\end{align*}
当 $a=b=1$, $c=d=-1$ 时取等。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-4-10 15:18
我还默认是正数呢,
$a,b,c,d$是正数,可不可以做?有没有最小值?

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2014-4-10 15:25
回复 3# 其妙


    那就简单了,直接均值.最小10,此时a=b=c=d=1

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-4-10 15:54
回复 4# realnumber

详细一点:
\begin{align*}
& a^2+b^2+c^2+d^2+ab+ac+ad+bc+bd+cd  \\
={}&\frac{a^2+b^2+c^2+d^2}2+\frac{a^2+2ad+d^2+b^2+2bc+c^2}2+ab+ac+bd+cd \\
={}&\frac{a^2+b^2+c^2+d^2}2+\frac{(a+d)^2+(b+c)^2}2+(a+d)(b+c)\\
\geqslant{}&\frac{a^2+b^2+c^2+d^2}2+|(a+d)(b+c)|+(a+d)(b+c) \\
\geqslant{}&\frac{a^2+b^2+c^2+d^2}2 \\  
\geqslant{}&2\sqrt[4]{a^2b^2c^2d^2} \\
={}&2,
\end{align*}

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-4-10 16:20
回复 3# 其妙

正数就不会有人问了……

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-4-10 16:29
回复 6# kuing
我想复杂了,准备用马克劳林,一下子得到结果,

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:19 GMT+8

Powered by Discuz!

Processed in 0.015464 seconds, 25 queries