Forgot password
 Register account
View 2114|Reply 6

[数列] 用数学归纳法怎么证

[Copy link]

27

Threads

102

Posts

0

Reputation

Show all posts

史嘉 posted 2014-4-10 22:58 |Read mode
已知$x_n=2^{n-1}/(2^{n-1}+1)$,
求证$x_1+x_2+···+x_n>n-2$.

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-4-10 23:07
回复 1# 史嘉
可以加强一下命题吧,

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-4-11 00:15
我只记得这个用柯西不等式证得简单……

81

Threads

434

Posts

12

Reputation

Show all posts

tommywong posted 2014-4-11 08:42
$\displaystyle \sum_{r=1}^n \frac{2^{r-1}}{2^{r-1}+1} \ge \frac{n^2}{n+2-2^{1-n}}=n-2+2^{1-n}+\frac{(2-2^{1-n})^2}{n+2-2^{1-n}}$

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2014-4-11 09:02
\[\frac{2^{n-1}}{2^{n-1}+1}=1-\frac{1}{2^{n-1}+1}\]
问题等价于
\[\frac{1}{1+1}+\frac{1}{2+1}+\frac{1}{2^{2}+1}+...+\frac{1}{2^{n-1}+1}<1+\frac{1}{2}+\frac{1}{2^{2}}+...+\frac{1}{2^{n-1}}=2-\frac{1}{2^{n-1}}<2\]
按2楼提议,用数学归纳法证明
\[\frac{1}{1+1}+\frac{1}{2+1}+\frac{1}{2^{2}+1}+...+\frac{1}{2^{n-1}+1}\le 2-\frac{1}{2^{n-1}}\]

412

Threads

1432

Posts

3

Reputation

Show all posts

realnumber posted 2014-4-11 09:05
提问:估计1楼所证不等式左边的下界.

27

Threads

102

Posts

0

Reputation

Show all posts

original poster 史嘉 posted 2014-4-11 10:30

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:48 GMT+8

Powered by Discuz!

Processed in 0.011850 seconds, 22 queries