|
Further "conditional" identities for the case $α+β+γ=180°$
The following formulae apply to arbitrary plane triangles and follow from $\alpha + \beta + \gamma = 180^{\circ}$, as long as the functions occurring in the formulae are well-defined (the latter applies only to the formulae in which tangents and cotangents occur).
\begin{align}
\tan \alpha + \tan \beta + \tan \gamma &= \tan \alpha \tan \beta \tan \gamma \\
1 &= \cot \beta \cot \gamma + \cot \gamma \cot \alpha + \cot \alpha \cot \beta \\
\cot\left(\frac{\alpha}{2}\right) + \cot\left(\frac{\beta}{2}\right) + \cot\left(\frac{\gamma}{2}\right) &= \cot\left(\frac{\alpha}{2}\right) \cot \left(\frac{\beta}{2}\right) \cot\left(\frac{\gamma}{2}\right) \\
1 &= \tan\left(\frac{\beta}{2}\right)\tan\left(\frac{\gamma}{2}\right) + \tan\left(\frac{\gamma}{2}\right)\tan\left(\frac{\alpha}{2}\right) + \tan\left(\frac{\alpha}{2}\right)\tan\left(\frac{\beta}{2}\right) \\
\sin \alpha + \sin \beta + \sin \gamma &= 4\cos\left(\frac{\alpha}{2}\right)\cos\left(\frac{\beta}{2}\right)\cos\left(\frac{\gamma}{2}\right) \\
-\sin \alpha + \sin \beta + \sin \gamma &= 4\cos\left(\frac{\alpha}{2}\right)\sin\left(\frac{\beta}{2}\right)\sin\left(\frac{\gamma}{2}\right) \\
\cos \alpha + \cos \beta + \cos \gamma &= 4\sin\left(\frac{\alpha}{2}\right)\sin\left(\frac{\beta}{2}\right)\sin \left(\frac{\gamma}{2}\right) + 1 \\
-\cos \alpha + \cos \beta + \cos \gamma &= 4\sin\left(\frac{\alpha}{2}\right)\cos\left(\frac{\beta}{2}\right)\cos \left(\frac{\gamma}{2}\right) - 1 \\
\sin (2\alpha) + \sin (2\beta) + \sin (2\gamma) &= 4\sin \alpha \sin \beta \sin \gamma \\
-\sin (2\alpha) + \sin (2\beta) + \sin (2\gamma) &= 4\sin \alpha \cos \beta \cos \gamma \\
\cos (2\alpha) + \cos (2\beta) + \cos (2\gamma) &= -4\cos \alpha \cos \beta \cos \gamma - 1 \\
-\cos (2\alpha) + \cos (2\beta) + \cos (2\gamma) &= -4\cos \alpha \sin \beta \sin \gamma + 1 \\
\sin^2\alpha + \sin^2\beta + \sin^2\gamma &= 2 \cos \alpha \cos \beta \cos \gamma + 2 \\
-\sin^2\alpha + \sin^2\beta + \sin^2\gamma &= 2 \cos \alpha \sin \beta \sin \gamma \\
\cos^2\alpha + \cos^2\beta + \cos^2\gamma &= -2 \cos \alpha \cos \beta \cos \gamma + 1 \\
-\cos^2\alpha + \cos^2\beta + \cos^2\gamma &= -2 \cos \alpha \sin \beta \sin \gamma + 1 \\
\sin^2 (2\alpha) + \sin^2 (2\beta) + \sin^2 (2\gamma) &= -2\cos (2\alpha) \cos (2\beta) \cos (2\gamma)+2 \\
\cos^2 (2\alpha) + \cos^2 (2\beta) + \cos^2 (2\gamma) &= 2\cos (2\alpha) \,\cos (2\beta) \,\cos (2\gamma) + 1 \\
1 &= \sin^2 \left(\frac{\alpha}{2}\right) + \sin^2 \left(\frac{\beta}{2}\right) + \sin^2 \left(\frac{\gamma}{2}\right) + 2\sin \left(\frac{\alpha}{2}\right) \,\sin \left(\frac{\beta}{2}\right) \,\sin \left(\frac{\gamma}{2}\right)
\end{align} |
|