Forgot password?
 Register account
View 2381|Reply 18

1704年4月15日欧拉出生

[Copy link]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2014-4-15 22:08 |Read mode
除了高等的$e^{i\pi}=-1$,也有初等的$R\geqslant 2r$.

数学天才

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-4-15 22:11
回复 1# isee

$d^2=R(R-2r)$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-4-15 22:13
Last edited by isee 2014-4-15 23:36\[e \approx \left(1+9^{-4^{7\times 6}}\right)^{3^{2^{85}}}\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-4-15 22:16
回复 2# kuing

怎么显大更大一些的公式?

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-4-15 22:21
原来 \Huge 这些一样有效果,一直用默认,sign~~

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-4-15 22:22
Last edited by isee 2014-4-15 23:37
\[{e \approx \left(1+9^{-4^{7\times 6}}\right)^{3^{2^{85}}}}\]
isee 发表于 2014-4-15 22:13
不知道,这个用软件是否能算出来,哈哈

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-4-15 23:26
回复 5# isee

曾经测试过,公式中用代码来调整大小效果不太好,有时会偏移或错位,这里建议直接用论坛的字号来控制(即高级发贴模式里面两个T那个按钮)

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-4-15 23:29
  1. \[
  2. \Huge {e \approx \left(1+9^{-4^{7\times 6}}\right)^{3^{2^{85}}}}
  3. \]
Copy the Code

\[\Huge {e \approx \left(1+9^{-4^{7\times 6}}\right)^{3^{2^{85}}}}\]
  1. [size=7]\[
  2. e \approx \left(1+9^{-4^{7\times 6}}\right)^{3^{2^{85}}}
  3. \][/size]
Copy the Code

\[e \approx \left(1+9^{-4^{7\times 6}}\right)^{3^{2^{85}}}\]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-4-15 23:36
回复 6# isee

用软件应该是算不出来的,指数应该超了软件能运算的最大值……

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-4-15 23:37
论坛代码,还是大些,换了

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-4-15 23:50
回复 6# isee

虽然软件算不出来,但是它其实是很显然的,不过发现者还是值得佩服的。
\[9^{4^{7\times 6}}=9^{2^{84}}=3^{2^{85}}\]
所以,若记 $n=9^{4^{7\times 6}}$,超级大的一个数,则原式就是
\[\left(1+9^{-4^{7\times 6}}\right)^{3^{2^{85}}}=\left(1+\frac1n\right)^n\approx e\]
误差自然超级小。

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-4-16 00:20
回复 11# kuing

于是同理,你只要找一个能化成只含一个 1 和两个 n 的式子,当这个式子的 n 很大时它趋向某个值,然后你将那两个 n 分别用上面的两个代数式代入进去,也同样得到看上去很有型的公式。
例如 $n\sin(1/n)$,于是 $\displaystyle 9^{4^{7\times6}}\cdot\sin\frac1{3^{2^{85}}}=0.999999999999999\cdots$

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-4-16 00:46
回复 12# kuing


    1到9全了,好玩嘛

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2014-5-8 22:21
回复 3# isee

又忘记了 19476 3285

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2014-5-10 13:16
回复 14# isee
1960年,美国数学家证明存在一个正整数$n$,使得$133^5+110^5+84^5+27^5=n^5$,推翻了数学家欧拉的一个猜想.请你求出$n$的值.
欧拉的猜想??谁知道?

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2014-8-6 14:52
回复 12# kuing
Y年是一个特别有名的数学家的第N个生日;恰巧Y又是第N+1个素数。求Y, N, 以及这个数学家的名字。【提示;Y是一个素数】
这个更好玩!

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2015-2-17 13:19
回复 3# isee
lomont.org/Math/Papers/2011/PandigitalApproximationToE.pdf
(1+9^(-4^(6x7)))^3^2^85是數學常數e的逼近算式,當中數字1至9各出現一次,而且精確到18457734525360901453873570個數字(包括個位數2)。它由Richard Sabey在2004年給出

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2016-11-12 23:00
回复 5# isee
原来 \Huge 这些一样有效果,一直用默认,sign~~
isee 发表于 2014-4-15 22:21
\[
标准文档中的字号\\
\boxed{
\begin{array}{l}
\boxed{\bf{size}}&\boxed{\bf{10pt(default)}}&\boxed{\bf{11pt option}}&\boxed{\bf{11pt option}}\\
\fbox{\tiny}&\boxed{5pt}&\boxed{6pt}&\boxed{6pt}\\
\fbox{\scripisize}&\boxed{7pt}&\boxed{8pt}&\boxed{8pt}\\
\fbox{\footnotesize}&\boxed{8pt}&\boxed{9pt}&\boxed{10pt}\\
\fbox{\small}&\boxed{9pt}&\boxed{10pt}&\boxed{11pt}\\
\fbox{\normalsize}&\boxed{10pt}&\boxed{11pt}&\boxed{12pt}\\
\fbox{\large}&\boxed{12pt}&\boxed{12pt}&\boxed{14pt}\\
\fbox{\Large}&\boxed{14pt}&\boxed{14pt}&\boxed{17pt}\\
\fbox{\LARGE}&\boxed{17pt}&\boxed{17pt}&\boxed{20pt}\\
\fbox{\huge}&\boxed{20pt}&\boxed{20pt}&\boxed{25pt}\\
\fbox{\Huge}&\boxed{25pt}&\boxed{25pt}&\boxed{25pt}\\
\end{array}
}
\]
\[
中英文字号对照表\\
\boxed{
\begin{array}{l}
\begin{split}
\boxed{初号}&\boxed{小初}&\boxed{一号}&\boxed{小一}&\boxed{二号}&\boxed{小二}&\boxed{三号}&\boxed{小三}&\boxed{四号}&\boxed{小四}&\boxed{五号}&\boxed{小五}&\boxed{六号}&\boxed{小六}&\boxed{七号}&\boxed{八号}\\
\boxed{42pt}&\boxed{36pt}&\boxed{26pt}&\boxed{24pt}&\boxed{22pt}&\boxed{18pt}&\boxed{16pt}&\boxed{15pt}&\boxed{14pt}&\boxed{12pt}&\boxed{10.5pt}&\boxed{9pt}&\boxed{7.5pt}&\boxed{6.5pt}&\boxed{5.5pt}&\boxed{5pt}\\
\end{split}
\end{array}
}

\]

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

 Author| isee Posted 2016-11-13 09:14
回复 18# 青青子衿


    这帖出来了,竟然。。。

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit