Forgot password?
 Register account
View 2308|Reply 8

[不等式] 2014浙江竞赛试题

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2014-4-18 22:38 |Read mode
Last edited by hbghlyj 2025-4-8 05:31已知 $b, c \inR$,二次函数 $f(x)=x^2+b x+c$ 在 $(0,1)$ 上与 $x$ 轴有两个不同的交点,求 $c^2+(1+b) c$ 的取值范围。

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-4-18 22:41
$x_1$, $x_2\in(0,1)$, $c=x_1x_2$, $c^2+(1+b)c=cf(1)=x_1x_2(1-x_1)(1-x_2)\le\cdots$

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2014-4-18 22:54
$\dfrac{1}{8}$

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-4-18 23:35
回复 3# aishuxue

均值后应该是 1/16 啊……

10

Threads

26

Posts

197

Credits

Credits
197

Show all posts

chr93918 Posted 2014-4-20 14:42
取不到 1/16 ……

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-4-20 14:57
嗯,交点不同

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-4-20 15:24

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-4-20 15:27
回复 7# 其妙

啧啧……给这链接……何必哩……解法都没什么不同,而且最后结果还错了呢……

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-4-20 15:29
回复 8# kuing

Mobile version|Discuz Math Forum

2025-6-6 09:10 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit