Forgot password?
 Create new account
View 2149|Reply 6

[几何] 寻找2013重庆高考理科第10题几何解法

[Copy link]

34

Threads

98

Posts

929

Credits

Credits
929

Show all posts

hongxian Posted at 2014-4-21 09:24:19 |Read mode
在平面上,$\vv{AB_1}\perp \vv{AB_2}$,$\abs{\vv{OB_1}}=\abs{\vv{OB_2}}=1$,$\vv{AP}=\vv{AB_1}+\vv{AB_2}$,若$\abs{\vv{OP}}<\dfrac12$,求$\abs{\vv{OA}}$的取值范围。

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2014-4-21 13:17:10

34

Threads

98

Posts

929

Credits

Credits
929

Show all posts

 Author| hongxian Posted at 2014-4-21 19:06:01
看样子是建系得这个结论了
空间一点到矩形一条对角线两端点的距离的平方和等于到矩形另一条对角线两端点的距离的平方和

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-21 23:11:18

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted at 2014-4-22 19:01:31
回复 4# 其妙


      第一个链接中的第一种解法,不容易想到,除非已经知道了向量间的等量关系的结论。第二种向量解法比较自然。

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted at 2014-4-23 19:44:16
Last edited by 踏歌而来 at 2014-4-24 13:31:00我也凑个热闹。

矩形的两条对角线长度相等,因此有:
$|\vv{OP}-\vv{OA}|=|\vv{OB1}-\vv{OB2}|    $①

$又\vv{OA}$
$=\vv{OP}+\vv{PA}$
$=\vv{OP}-\vv{AP}$
$=\vv{OP}-(\vv{AB1}+\vv{AB2})$
$=\vv{OP}-(\vv{OB1}-\vv{OA}+\vv{OB2}-\vv{OA})$
所以有:
$\vv{OP}+\vv{OA}=\vv{OB1}+\vv{OB2}      $②
$①^2+②^2$,则得:
$OP^2+OA^2=OB1^2+OB2^2$
$又0≤OP^2<\frac{1}{4},OB1^2=OB2^2=1$
$因此有: \frac{7}{4}<OA^2≤2$
$所以 \frac{\sqrt{7}}{2}<|\vv{OA}|≤\sqrt{2}$
$答案是D。$

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted at 2014-4-24 10:00:25
再配一张图:
向量01.JPG

手机版Mobile version|Leisure Math Forum

2025-4-23 05:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list