Forgot password?
 Create new account
View 3031|Reply 11

[不等式] (z)ssilwa不等式

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-4-21 13:25:56 |Read mode
已知:$x,y,z\in R^+,4\le x+y+z\le5$,求证:$\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\ge 4+(x-y)^2 $

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-21 23:35:17
可以证明一个比$(x-y)^2$的系数稍微弱一点的不等式,此时$(x-y)^2$的系数$1$改成$\dfrac45$.

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-4-21 23:53:35
回复 2# 其妙

那就太简单了,没玩头
现在这个挺难的,放缩了几回都过头了

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-22 00:22:53
回复 3# kuing

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2014-4-22 12:50:22
长春学生戴--(18----141) 09:47:42
我证明了只需证明x+y+z=4和5的情况,但是=5的情况一直没做出
马鞍山 孙世宝(457----03) 09:55:40
我证明了只需证明x+y+z=4和5的情况,但是=5的情况一直没做出
长春学生戴--(184---41) 09:58:40
柯西构造局部
马鞍山 孙世宝(45----03) 09:58:44
双击查看原图是的,只要证明这两种情形:利用一下平移和相似变换---x=x'+t,x=tx'即可。
长春学生戴--(18-----41) 10:01:18
哦,我是齐次化,引入了一个4到5的参数k,然后右边关于这个k是下凸的,所以只需验证边界

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-22 22:25:58
回复 5# realnumber
啥意思?他们解决了?

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2014-4-22 22:45:33
回复 6# 其妙
没,就x+y+z=5条件下没证明了.只需要解决它,就OK了.

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-23 00:00:30
回复 7# realnumber
我只会$\dfrac45$

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2014-4-23 07:20:51
回复 8# 其妙

要不也贴下?也许有借鉴作用.

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-4-23 12:23:02
回复 9# realnumber

\[\frac{x^2}y+\frac{y^2}z+\frac{z^2}x=x+y+z+\frac{(x-y)^2}y+\frac{(z-y)^2}z+\frac{(x-z)^2}x\ge\cdots\]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-23 13:06:47
\[\frac{x^2}y+\frac{y^2}z+\frac{z^2}x=x+y+z+\frac{(x-y)^2}y+\frac{(z-y)^2}z+...\]
kuing 发表于 2014-4-23 12:23

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-24 00:06:56
1、artofproblemsolving.com/Forum/viewtopic.php?f=51&t=586693

2、artofproblemsolving.com/Forum/viewtopic.php?f=52&t=586357
刘保乾先生也出马了:
(ssilwa)Let $x,y,z > 0$.

If $4 \le x+y+z \le 5$, prove that
\[ \frac{x^2}y+ \frac{y^2}z+ \frac{z^2}x \ge 4+(x-y)^2 \]
Dear you,I move your result, nice as yours:

Let $x,y,z > 0$.

If $4 \le x+y+z \le 5$, prove that
\[\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \geq \frac{9}{5}+\frac{27}{250}(x-y)^2\]

手机版Mobile version|Leisure Math Forum

2025-4-22 04:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list