Forgot password?
 Create new account
View 2006|Reply 2

[不等式] 来自人教群的$a+b+c=1,1/a+1/b+1/c=10$求$abc$最小

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2014-4-23 01:33:24 |Read mode
爱好者-Nash(2770*****)  1:16:49
QQ截图20140423013007.gif

记 $r=abc$,则 $ab+bc+ca=10r$,由 $(a-b)^2(b-c)^2(c-a)^2\geqslant 0$ 展开代入得 $-r(32r-1)(125r-4)\geqslant0$,解得 $1/32\leqslant r\leqslant 4/125$,当 $(a,b,c)=(1/2,1/4,1/4)$ 及其轮换时 $r=1/32$,当 $(a,b,c)=(1/5,2/5,2/5)$ 及其轮换时 $r=4/125$。

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

 Author| kuing Posted at 2014-4-23 01:44:48
由柯西或均值得
\[(1-c)\left( 10-\frac1c \right)=(a+b)\left( \frac1a+\frac1b \right)\geqslant 4,\]
解得
\[\frac15\leqslant c\leqslant \frac12,\]

\[10=\frac{a+b}{ab}+\frac1c=\frac{(1-c)c}{abc}+\frac1c,\]

\[
abc=\frac{(1-c)c^2}{10c-1}=f(c),
\]
求导得
\[f'(c)=-\frac{c (4 c-1) (5 c-2)}{(10 c-1)^2},\]
故 $f(c)$ 在 $[1/5,1/4]$ 递减,在 $[1/4,2/5]$ 递增,在 $[2/5,1/2]$ 递减,所以
\[f(c)\geqslant \min\left\{f\left(\frac14\right), f\left(\frac12\right)\right\}=\frac1{32},\]
以及
\[f(c)\leqslant \max\left\{f\left(\frac15\right), f\left(\frac25\right)\right\}=\frac4{125},\]
所以 $1/32\leqslant abc\leqslant 4/125$,当 $(a,b,c)=(1/2,1/4,1/4)$ 及其轮换时 $abc=1/32$,当 $(a,b,c)=(1/5,2/5,2/5)$ 及其轮换时 $abc=4/125$。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-24 12:55:35
,找不到改进的方法了,而且1楼是终极性的方法了!

手机版Mobile version|Leisure Math Forum

2025-4-22 06:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list