|
郝酒
posted 2014-4-28 14:40
Last edited by 郝酒 2014-4-28 20:22这题就是慢慢鬥
$$2^{x+1}=(z-y)(z+y)$$
$z-y,z+y$同为2的幂.
$$z = \frac{2^m+2^n}{2}=2^{m-1}+2^{n-1},y=\frac{2^{m}-2^{n}}{2} = 2^{m-1}-2^{n-1}$$
同为奇素数
因此$n=1$.
令$t = m-1$,解变成$z = 2^t+1,y=2^t-1,2^{x+1}=z^2-y^2=2^{t+2}$
要$y$是素数,$t=2,x=3,z = 5,y=3$ |
|