Forgot password?
 Create new account
View 1633|Reply 3

[数论] (z)转个不定方程(来自不等式群)

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-4-28 13:38:42 |Read mode
QQ图片20140428133557.jpg
看到就感觉很无力的那种.

133

Threads

259

Posts

2333

Credits

Credits
2333

Show all posts

郝酒 Posted at 2014-4-28 14:40:48
Last edited by 郝酒 at 2014-4-28 20:22:00这题就是慢慢鬥
$$2^{x+1}=(z-y)(z+y)$$
$z-y,z+y$同为2的幂.
$$z = \frac{2^m+2^n}{2}=2^{m-1}+2^{n-1},y=\frac{2^{m}-2^{n}}{2} = 2^{m-1}-2^{n-1}$$
同为奇素数
因此$n=1$.
令$t = m-1$,解变成$z = 2^t+1,y=2^t-1,2^{x+1}=z^2-y^2=2^{t+2}$
要$y$是素数,$t=2,x=3,z = 5,y=3$

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2014-4-28 15:32:51
回复 2# 郝酒
想明白了,最后一步是,z,y一定有一个被3整除(二项展开$(3-1)^t+1,(3-1)^t-1$).
要都是质数的话,只能一个是3.

133

Threads

259

Posts

2333

Credits

Credits
2333

Show all posts

郝酒 Posted at 2014-4-28 20:20:19
我是直接由$2^t-1$因式分解去想的,这样的话好像也可以取7,31之类的。(这时,z不得行)
你这种做法是对的,我未考虑周全.

手机版Mobile version|Leisure Math Forum

2025-4-22 06:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list