Forgot password?
 Create new account
View 1599|Reply 7

[数论] 问一个素数存在的题和一个整数的题

[Copy link]

418

Threads

1631

Posts

110K

Credits

Credits
11906

Show all posts

abababa Posted at 2014-5-1 16:14:06 |Read mode
1,$n$是正整数,求证存在无穷多个素数$p$使得$\sqrt{n}+\sqrt{p+n}$是整数
2,$a,b,c$是正整数且两两互素,其中任意两数之和是第三数的倍数,求证$abc=6$

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-5-1 22:49:01
回复 1# abababa


1.没头绪
2.以下字母都是整数,不妨设$a<b<c,ak=b+c$,显然有$k\ge3$,
又$ct=a+b,t\ge1$,消去a得到$(1+k)b=(kt-1)c$,又$b<c$,
所以有$1+k>kt-1$,即$2>k(t-1)$,因此$t=1$,
由$(1+k)b=(k-1)c$,$mb=(k-1),mc=k+1,$得到$m(c-b)=2$得m=1或2.后面略.
可能推理还能更简略点,总觉得拖沓.

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-1 23:15:25

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-5-1 23:17:22
问题1,似乎有错误,假设任意某个给定的非平方数n,
存在某个整数p,m,有$\sqrt{p+n}=m-\sqrt{n}$,
两边平方得$p+n=m^2+n-2m\sqrt{n}$,这样左边整数,右边无理数,矛盾.

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-5-1 23:21:42
回复 3# 其妙

漏了个"存在",就是2个问题啊~~~.估计楼主疏忽了.

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-1 23:24:23
回复 5# realnumber
这些非常规的题一般都没下决心去管它了,只是浏览一下,只是感觉面熟,不晓得哪里的竞赛题考过

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-5-1 23:31:20
常规问题是体力活,实在缺乏兴趣.宁可想非常规的,做不了.

418

Threads

1631

Posts

110K

Credits

Credits
11906

Show all posts

 Author| abababa Posted at 2014-5-2 08:03:15
谢谢,第二题问了一位网友,他的解答有些步骤挺简明的
不妨设$a \le b \le c$,仅当$a=b=c=1$时取等号,当$a<b<c$时,由于$2a < b+c = pa$,于是$p >2$,于是$p \ge 3$
由于$2c > a+b = qc$,所以$2 > q$,所以$q = 1$,于是$c = a+b$
由于$a+c = rb$,所以$a+(a+b) = rb$,而$pa = b+c = a+2b$,两式消去$a$有$(p-1)(r-1) = 4$,而$p \ge 3, r \ge 1$
于是$p=3,r=3$或$p=5,r=2$,解得$b=a,c=2a$或$b=2a,c=3a$
由于$a,b,c$两两互素,所以$a=b=c=1$或$a=b=1,c=2$或$a=1,b=2,c=3$,所以$abc = 1,2,6$

手机版Mobile version|Leisure Math Forum

2025-4-22 06:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list