Forgot password?
 Create new account
View 2432|Reply 10

[不等式] 一大波不等式正在逼近

[Copy link]

5

Threads

4

Posts

52

Credits

Credits
52

Show all posts

天书 Posted at 2014-5-3 20:11:25 |Read mode
Last edited by 天书 at 2014-5-3 20:40:001:$a,b,c\ge0$,求满足下式的最小系数$k$使得:
$$\sum\frac{(b+c)\sqrt{bc}}{\sqrt{(a+c)(a+b)}}\le k\sum a$$
2:$a,b,c\ge0,a+b+c=1$,证:$$\sum ab\sum ab^2\le\frac{1}{27}$$
3:$x_k>0$满足$\sum_{k=1}^nx_k=n$,证明:$$
\frac{x_1}{x_2}+\frac{x_2}{x_3}+\cdots+\frac{x_n}{x_1}\le\frac{4}{x_1x_2\cdots x_n}+n-4$$
4:$a,b,c,d>0$满足$3(a^2+b^2+c^2+d^2)=4(a+b+c+d)+1$,证明:$$a^3+b^3+c^3+d^3\le11$$
5:$0\le a_1\le a_2\le\cdots\le a_{3n}$,证:
$$\left(\sum_{k=1}^{3n}a_k\right)^3\ge27n^2\sum_{k=1}^na_ka_{n+k}a_{2n+k}$$
6:$a,b,c,d\ge0,a+b+c+d=4$,证明:$$\left(a^2b+b^2c+c^2d+d^2a\right)\left(abc+bcd+cda+dab\right)\le16$$

700

Threads

110K

Posts

910K

Credits

Credits
94222
QQ

Show all posts

kuing Posted at 2014-5-3 20:27:19
这标题……
“一大波不等式正在近”

700

Threads

110K

Posts

910K

Credits

Credits
94222
QQ

Show all posts

kuing Posted at 2014-5-3 20:44:14
第2题就是经典的这个 artofproblemsolving.com/blog/38749

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-3 22:29:23
这标题……
“一大波不等式正在近”
kuing 发表于 2014-5-3 20:27

700

Threads

110K

Posts

910K

Credits

Credits
94222
QQ

Show all posts

kuing Posted at 2014-5-3 22:41:08
第1题:
令 $b=c=1$,则应有
\[\frac2{a+1}+\sqrt{2a(a+1)}\leqslant k(a+2)\]
对任意 $a\geqslant 0$ 恒成立,而求极限易得
\[\lim_{a\to+\infty}\frac1{a+2}\left( \frac2{a+1}+\sqrt{2a(a+1)} \right)=\sqrt2,\]
可见必先有 $k\geqslant \sqrt2$,下面证明当 $k=\sqrt2$ 时不等式成立。

由对称性,不妨设 $a=\max\{a,b,c\}$,则
\begin{align*}
\sum{\frac{(b+c)\sqrt{bc}}{\sqrt{(a+b)(a+c)}}} &=\frac{(b+c)\sqrt{bc}}{\sqrt{(a+b)(a+c)}} +\frac{(c+a)\sqrt{ca}}{\sqrt{(b+c)(b+a)}} +\frac{(a+b)\sqrt{ab}}{\sqrt{(c+a)(c+b)}} \\
& \leqslant \frac{(b+c)\sqrt{bc}}{\sqrt{(c+b)(b+c)}} +\frac{(c+a)\sqrt{ca}}{\sqrt{(b+c)a}} +\frac{(a+b)\sqrt{ab}}{\sqrt{a(c+b)}} \\
& =\sqrt{bc}+\frac{b\sqrt b+c\sqrt c}{\sqrt{b+c}}+a\frac{\sqrt b+\sqrt c}{\sqrt{b+c}} \\
& \leqslant \sqrt{bc}+\frac{b\sqrt b+c\sqrt c}{\sqrt{b+c}}+\sqrt2a,
\end{align*}
故剩下只需证
\[\sqrt{bc}+\frac{b\sqrt b+c\sqrt c}{\sqrt{b+c}}\leqslant \sqrt2(b+c),\]
为了改少根号,令 $b=x^2$, $c=y^2$,其中 $x$, $y>0$,则上式等价于
\[\frac{x^3+y^3}{\sqrt{x^2+y^2}}\leqslant \sqrt2(x^2+y^2)-xy,\]
显然右边非负,故两边平方等价于
\[\frac{(x^3+y^3)^2}{x^2+y^2}\leqslant 2(x^2+y^2)^2-2\sqrt2xy(x^2+y^2)+x^2y^2,\]
只需证明更强式
\[\frac{(x^3+y^3)^2}{x^2+y^2}\leqslant 2(x^2+y^2)^2-3xy(x^2+y^2)+x^2y^2,\quad(1)\]
事实上
\begin{align*}
(1) &\iff \frac{(x+y)^2(x^2+y^2-xy)^2}{x^2+y^2}\leqslant (2x^2+2y^2-xy)(x^2+y^2-xy) \\
&\iff (x+y)^2(x^2+y^2-xy)\leqslant (x^2+y^2)(2x^2+2y^2-xy) \\
&\iff \bigl(x^2+y^2-(x+y)^2\bigr)xy\leqslant (x^2+y^2)\bigl(2x^2+2y^2-(x+y)^2\bigr) \\
&\iff -2x^2y^2\leqslant (x^2+y^2)(x-y)^2,
\end{align*}
显然成立。

综上所述,$k$ 的最小值为 $\sqrt2$。

700

Threads

110K

Posts

910K

Credits

Credits
94222
QQ

Show all posts

kuing Posted at 2014-5-3 22:53:04
PS. 第1题的反方向不等式之前在这里做过 kkkkuingggg.haotui.com/thread-681-1-7.html

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-5-7 22:10:46
转一个
QQ图片20140507173911.jpg
证明:y=4-x-z-w代入得到,需要证明(x+z)(4-x-z-w)+zw+x+w≤6.25
上式左边看作w的一次函数(0≤w≤4-x-z),所以只需要证明w=0与w=4-x-z代入成立即可.
当w=0时,即为(x+z)(4-x-z)+x+z-z≤6.25,其中0≤x+z≤4,左边看作x+z的二次函数,得6.26-z≤6.25成立.
当w=4-x-z时,此时y=0,即为(z+1)(4-x-z)+x≤6.25,其中0≤x≤4-z,(因为w=4-x-z≥0),左边为x的一次函数,x=0和x=4-z代入可证.

700

Threads

110K

Posts

910K

Credits

Credits
94222
QQ

Show all posts

kuing Posted at 2014-5-7 22:11:29
回复 7# realnumber

?可以另开新贴哇

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-5-8 18:18:58
Last edited by realnumber at 2014-5-8 18:25:00 QQ图片20140507173911.jpg 又是1楼楼主的
$type 不等式2a^3.gsp (2.9 KB, Downloads: 2371)
几何画板实验了下,没发现错误.

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-5-22 07:22:11
Last edited by realnumber at 2014-5-22 08:32:00 $type 未命名1.gsp (3.51 KB, Downloads: 2323) QQ截图20140522072043.jpg
1楼楼主的.
附件中:对于给定的b,细线a是c的函数,粗线是所证不等式b=1.6,c=2.5是反例.

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-6-28 16:42:52
第三题是2012以色列数学奥林匹克blog.sina.com.cn/s/blog_4c11310201015ged.html

手机版Mobile version|Leisure Math Forum

2025-4-23 02:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list