Forgot password?
 Create new account
View 2338|Reply 7

[不等式] 二元条件最小值

[Copy link]

181

Threads

198

Posts

2172

Credits

Credits
2172

Show all posts

guanmo1 Posted at 2014-5-4 16:27:36 |Read mode
如图
二元条件最小值.jpg

700

Threads

110K

Posts

910K

Credits

Credits
94222
QQ

Show all posts

kuing Posted at 2014-5-4 16:56:56
令 $x_1+x_2=t$,易见 $t$ 的取值范围是 $\mbb R$,原式平方化为
\[\frac{t^2+16}{(3-t)^2},\]
就是常规的东西了,随便做……

181

Threads

198

Posts

2172

Credits

Credits
2172

Show all posts

 Author| guanmo1 Posted at 2014-5-4 17:00:37
回复 2# kuing


    嗯,更进一步地,干脆令t=3-(x1+x2)了。这样分母为单项式,好搞。

700

Threads

110K

Posts

910K

Credits

Credits
94222
QQ

Show all posts

kuing Posted at 2014-5-4 17:04:04
回复 3# guanmo1

181

Threads

198

Posts

2172

Credits

Credits
2172

Show all posts

 Author| guanmo1 Posted at 2014-5-4 17:15:29
回复 4# kuing


   

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-8 23:49:52
回复 1# guanmo1
下面的方法,既不消元,也不变为一元函数:
\begin{align*}
|x_1-x_2|^2&=(x_1+x_2)^2-4x_1x_2\\
&=(x_1+x_2)^2+16\\
&=\dfrac{9\times16}{9}+\dfrac{(-4x_1-4x_2)^2}{16}\\
&\geqslant\dfrac{(12-4x_1-4x_2)^2}{9+16}\\
&=\dfrac{16(3-x_1-x_2)^2}{25}.
\end{align*}所以,\[\abs{\dfrac{x_1-x_2}{3-(x_1+x_2)}}\geqslant\dfrac45.\]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2014-5-9 10:50:56
平方是关键,柯西出手就到位了

不过,这个凑配还是难点了,对新手,至少是

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-9 20:10:43
\begin{align*}
|x_1-x_2|^2&=-4x_1x_2+(x_1+x_2)^2\\
&=\dfrac{(-\dfrac34x_1x_2)^2}{-\dfrac{9}{64}x_1x_2}+\dfrac{(-x_1-x_2)^2}{1}\\
&\geqslant\dfrac{(-\dfrac34x_1x_2-x_1-x_2)^2}{-\dfrac{9}{64}x_1x_2+1}\\
&=\dfrac{(3-x_1-x_2)^2}{\dfrac{9}{16}+1}\\
&=\dfrac{16(3-x_1-x_2)^2}{25}.
\end{align*}
当$x_1x_2=-4m$(常数$m>0$),上面证明了不等式:\[|x_1-x_2|^2\geqslant\dfrac{(-\dfrac34x_1x_2-x_1-x_2)^2}{-\dfrac{9}{64}x_1x_2+1}=\dfrac{(3m-x_1-x_2)^2}{\dfrac{9m}{16}+1}.\]
所以,\[\abs{\dfrac{x_1-x_2}{3m-(x_1+x_2)}}\geqslant\dfrac{4}{\sqrt{9m+16}}.\]

手机版Mobile version|Leisure Math Forum

2025-4-23 03:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list