Forgot password?
 Register account
View 1840|Reply 2

[数列] 一道数列小题

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2014-5-4 21:56 |Read mode
等比数列$\{a_n\}$满足$a_1=1,0<q<\dfrac{1}{2}$,且对任意的正整数$k,a_k-(a_{k+1}+a_{k+2})$仍是该数列中的某一项,
求公比$q$的值.

83

Threads

434

Posts

5419

Credits

Credits
5419

Show all posts

tommywong Posted 2014-5-4 22:14
$a_n=q^{n-1}$

$q^{k-1}-q^k-q^{k+1}=q^m$

$q^{k-1}(1-q-q^2)=q^m$

$1-q-q^2\ne1$

$1-q-q^2=q$

$q^2+2q-1=0,q=\sqrt{2}-1$

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2014-5-5 00:48
回复 2# tommywong


不严谨
少一步:易证$1-q-q^2>\frac{1}{4}>q^2\ge q^n, n\in N^+, n\ge 2$
所以只能$1-q-q^2=q$

Mobile version|Discuz Math Forum

2025-6-6 19:07 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit