Forgot password?
 Register account
View 2324|Reply 11

[数列] 求和

[Copy link]

14

Threads

29

Posts

224

Credits

Credits
224

Show all posts

依然饭特稀 Posted 2014-5-5 15:34 |Read mode
Last edited by hbghlyj 2025-3-22 01:23$a_n=n!2^n$, 求 $S_n$

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-5-5 16:05
呃,原题是这样?

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2014-5-6 16:24
回复 2# kuing


    估计是提取的关键部分。和应该能求,我见过类似的阶乘求和,估计,主楼也能吧。

    用软件不能破?

83

Threads

434

Posts

5419

Credits

Credits
5419

Show all posts

tommywong Posted 2014-5-6 16:34
$n!$

已经不能

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2014-5-6 16:46
回复 4# tommywong


    那楼主应该查查源了。一时半会找不到我见到关于阶乘的例子了

83

Threads

434

Posts

5419

Credits

Credits
5419

Show all posts

tommywong Posted 2014-5-6 22:41
试一下近似的

$\displaystyle \sum_{r=1}^n r!=n!(1+\frac{1}{n}+\frac{1}{n(n-1)}+...)>n!(1+\frac{1}{n}+\frac{1}{n^2}+...)\approx n!(\frac{n}{n-1})$

$\displaystyle \sum_{r=1}^n r!2^r=n!2^n(1+\frac{1}{2n}+\frac{1}{4n(n-1)}+...)>n!(1+\frac{1}{2n}+\frac{1}{4n^2}+...)\approx n!2^n(\frac{2n}{2n-1})$

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2014-5-7 06:55
回复 1# 依然饭特稀


\[a_i=i!·2^i=\Gamma(i+1)2^i=\int_0^\infty(2x)^ie^{-x}dx\]   
\[S_n=\sum_{i=1}^na_i=\int_0^\infty\sum_{i=1}^n(2x)^i e^{-x}dx=\int_0^\infty\frac{2xe^{-x}((2x)^n-1)}{2x-1}dx\]
然后就这么地了,没法化简了

2

Threads

52

Posts

337

Credits

Credits
337

Show all posts

007 Posted 2014-5-7 08:46
个人感觉是因为字体问题,$n·2^n$中“·”显示出错成了“!”号。

83

Threads

434

Posts

5419

Credits

Credits
5419

Show all posts

tommywong Posted 2014-5-7 09:07
$\displaystyle x=1+\frac{1}{n}(1+\frac{1}{n-1}(1+\frac{1}{n-2}(...)))$算得近似式

$\displaystyle \sum_{r=1}^n r! \approx n! (\frac{\displaystyle \sum_{r=0}^k \frac{1}{P_n^r}}{\displaystyle 1-\frac{1}{P_n^{k+1}}})$

$\displaystyle \sum_{r=1}^{100} r! \approx 100! (\frac{\displaystyle 1+\frac{1}{100}+\frac{1}{100\times 99}+\frac{1}{100\times 99\times 98}}{\displaystyle 1-\frac{1}{100\times 99\times 98\times 97}})$达到了10位有效数字

$\displaystyle \sum_{r=1}^n r!2^r \approx n!2^n (\frac{\displaystyle \sum_{r=0}^k \frac{1}{2^r P_n^r}}{\displaystyle 1-\frac{1}{2^{k+1} P_n^{k+1}}})$

$\displaystyle \sum_{r=1}^{50} r!2^r \approx 50!2^{50} (\frac{\displaystyle 1+\frac{1}{100}+\frac{1}{100\times 98}+\frac{1}{100\times 98\times 96}}{\displaystyle 1-\frac{1}{100\times 98\times 96\times 94}})$达到了11位有效数字

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2014-5-9 23:06
看到个类似的是:

$1\cdot 1!+2\cdot 2!+\cdots+n\cdot n!$

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2014-5-9 23:12
回复 10# isee

这个简单裂项啊

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2014-5-9 23:50
稀饭害死好多人呀!

Mobile version|Discuz Math Forum

2025-6-6 06:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit