Forgot password?
 Register account
View 2322|Reply 2

[几何] I为内心,P在AB边上,若IP交BC于Q,求QC

[Copy link]

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2014-5-5 21:43 |Read mode
mathchina.com/cgi-bin/topic.cgi?forum=5&t … pic=20135&show=0
设I为三角形ABC内心,三边长AB=7,BC=6,AC=5,P在AB 边上,且AP=2,若IP交BC于Q,求QC
无标题.png
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2014-5-5 22:05
熟知 $a\vv{IA}+b\vv{IB}+c\vv{IC}=\vv0$,即 $a\bigl(\vv{BA}-\vv{BI}\bigr)-b\vv{BI}+c\bigl(\vv{BC}-\vv{BI}\bigr)=\vv0$,故
\[\vv{BI}=\frac{a\vv{BA}+c\vv{BC}}{a+b+c},\]
代入数据即
\[\vv{BI}=\frac13\vv{BA}+\frac7{18}\vv{BC},\]
设$QC=x$,则
\begin{align*}
\vv{BP}&=\frac57\vv{BA},\\
\vv{BQ}&=\frac{6-x}6\vv{BC},
\end{align*}
故由$P$, $I$, $Q$三点共线应有
\[\frac13\cdot\frac75+\frac7{18}\cdot\frac6{6-x}=1,\]
解得
\[x=\frac{13}8.\]

1

Threads

20

Posts

122

Credits

Credits
122

Show all posts

aipotuo Posted 2016-10-10 12:57
\[\dfrac{S_{\triangle{BPQ}}}{S_{\triangle{ABC}}}=\dfrac{BQ\cdot BP}{BA\cdot BC}=\dfrac{1/2r(BP+BQ)}{1/2r(AB+BC+CA)}\Longrightarrow
\dfrac{1}{BP}+\dfrac{1}{BQ}=\dfrac{3}{7}\].

Mobile version|Discuz Math Forum

2025-5-31 10:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit