Forgot password
 Register account
View 2307|Reply 7

[几何] 两个三角形

[Copy link]

1

Threads

3

Posts

0

Reputation

Show all posts

行尸 posted 2013-6-21 10:38 |Read mode
一三角形的三内角正弦值分别等于另一三角形三内角的余弦值( )
A.都为锐角三角形;B.都为钝角三角形;C.前者锐角三角形,后者钝角;d.前者钝角,后者锐角

1

Threads

3

Posts

0

Reputation

Show all posts

original poster 行尸 posted 2013-6-21 10:40
回复 1# 行尸
锐角余弦大于0,说明是锐角,这个简单,正弦的怎么办?

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2013-6-21 11:01
$\sin A=\cos\alpha$
$\sin B=\cos\beta$
$\sin C=\cos\gamma$
不失一般性,设$\cos\alpha<\cos\beta<\cos\gamma$
则$\sin A<\sin B<\sin C$
$\triangle ABC$为钝角三角形等价于$c^2>a^2+b^2$
由正弦定理上式等价于$\sin^2 C>\sin^2 A+\sin^2 B$
利用开始的等式替换掉sin
变为$\cos^2\gamma>\cos^2\alpha+\cos^2\beta$
而$\cos^2\gamma=\cos^2(\alpha+\beta)=(\cos\alpha\cos\beta-\sin\alpha\sin\beta)^2$
哈不会算了。好麻烦

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2013-6-21 11:04
等边三角形满足题设,直接A

==

晕了,这错误太低级了,哈哈哈哈


你们无视我,你们继续

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2013-6-21 11:11
$\sin A=\cos\alpha$
$\sin B=\cos\beta$
$\sin C=\cos\gamma$
不失一般性,设$\cos\alpha
Tesla35 发表于 2013-6-21 11:01
讨论一下,这个非常容易判别不是直角。



$\sin A=\cos\alpha =\sin (\dfrac {\pi}2-\alpha)$
$\sin B=\cos\beta = \cdots $
$\sin C=\cos\gamma = \cdots $

若锐角三角形,三式的角,相等,相加有 $A+B+C=\dfrac {\pi}2 $,矛盾,只能是钝角三角形了

1

Threads

3

Posts

0

Reputation

Show all posts

original poster 行尸 posted 2013-6-21 12:13
谢谢楼上各位
5楼办法好~~

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-6-22 22:55
是高考题吧?

4

Threads

14

Posts

0

Reputation

Show all posts

yhg1970 posted 2014-11-1 21:07
2006年安徽卷理第11题

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:07 GMT+8

Powered by Discuz!

Processed in 0.016283 seconds, 22 queries