Forgot password?
 Create new account
View 2081|Reply 5

[不等式] 不等式证明

[Copy link]

14

Threads

30

Posts

229

Credits

Credits
229

Show all posts

依然饭特稀 Posted at 2014-5-11 22:26:57 |Read mode
C3JEUCTT(K[CX@DDY~2Z}V4.jpg

700

Threads

110K

Posts

910K

Credits

Credits
94222
QQ

Show all posts

kuing Posted at 2014-5-11 22:55:12
观察到 $x=y=z$ 取等,故此由柯西有
\[\frac1{1+xy}+\frac1{1+xy}+\frac1{1+xy}+\frac1{1+yz}+\frac1{1+xz}\geqslant \frac{25}{5+3xy+yz+xz},\]
因此只要证
\[3xy+yz+xz\leqslant \frac15,\]

\[5(3xy+yz+xz)\leqslant (2x+2y+z)^2,\]
配方得
\[(2x+2y+z)^2-5(3xy+yz+xz)=\frac{15}4(x-y)^2+\frac14(x+y-2z)^2,\]
于是得证。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-11 22:57:05
思路顺畅,妙!

700

Threads

110K

Posts

910K

Credits

Credits
94222
QQ

Show all posts

kuing Posted at 2014-5-11 23:02:04
或者这样
\begin{align*}
\frac3{1+xy}+\frac1{1+yz}+\frac1{1+xz}&\geqslant \frac{12}{4+(x+y)^2}+\frac4{2+(x+y)z} \\
& =\frac{48}{16+(1-z)^2}+\frac8{4+(1-z)z},
\end{align*}

\[\frac{48}{16+(1-z)^2}+\frac8{4+(1-z)z}-\frac{125}{26} =\frac{(5z-1)^2(5z^2-13z+28)}{26(z^2-2z+17)(4+z-z^2)}\geqslant 0,\]
即得证。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-11 23:21:58
回复 4# kuing
居然还有这种消元呀!牛笔!

14

Threads

30

Posts

229

Credits

Credits
229

Show all posts

 Author| 依然饭特稀 Posted at 2014-5-12 09:27:56
谢谢

手机版Mobile version|Leisure Math Forum

2025-4-23 05:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list