Forgot password
 Register account
View 2230|Reply 5

[不等式] 不等式证明

[Copy link]
依然饭特稀 posted 2014-5-11 22:26 |Read mode
C3JEUCTT(K[CX@DDY~2Z}V4.jpg

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-5-11 22:55
观察到 $x=y=z$ 取等,故此由柯西有
\[\frac1{1+xy}+\frac1{1+xy}+\frac1{1+xy}+\frac1{1+yz}+\frac1{1+xz}\geqslant \frac{25}{5+3xy+yz+xz},\]
因此只要证
\[3xy+yz+xz\leqslant \frac15,\]

\[5(3xy+yz+xz)\leqslant (2x+2y+z)^2,\]
配方得
\[(2x+2y+z)^2-5(3xy+yz+xz)=\frac{15}4(x-y)^2+\frac14(x+y-2z)^2,\]
于是得证。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-5-11 22:57
思路顺畅,妙!

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-5-11 23:02
或者这样
\begin{align*}
\frac3{1+xy}+\frac1{1+yz}+\frac1{1+xz}&\geqslant \frac{12}{4+(x+y)^2}+\frac4{2+(x+y)z} \\
& =\frac{48}{16+(1-z)^2}+\frac8{4+(1-z)z},
\end{align*}

\[\frac{48}{16+(1-z)^2}+\frac8{4+(1-z)z}-\frac{125}{26} =\frac{(5z-1)^2(5z^2-13z+28)}{26(z^2-2z+17)(4+z-z^2)}\geqslant 0,\]
即得证。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-5-11 23:21
回复 4# kuing
居然还有这种消元呀!牛笔!
original poster 依然饭特稀 posted 2014-5-12 09:27
谢谢

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-22 15:25 GMT+8

Powered by Discuz!

Processed in 0.015780 seconds, 25 queries